—quikLoader

PRELIMINARY -

aul kLoader Referemnce Marmnwal
by Jim Sather

| 12/12/3%

coryrieht 198X
Jim Sather
all riehts reserved

Revision 1 ... 1/7/84

NOTE: i

form. Although it is not complete, we
provide this so that you may start
getting use ocut of your quikLoader.

We will send you a more complete
manual as soon as it is available.

This is a PRELIMINARY manual, in draft w
i

SOUTHERN CALIFORNIA RESEARCH GROUP
P.O. Box 2231, Goleta, CA 93118 (£05) 685-1931

APPLE COMPUTER, INC. makes no warranties,
either express or implied, regarding the
enclosed computer software package, its
merchantability or its fitness for any
particular purpose. The exclusion of
implied warranties is not permitted by
some states. The above exclusion may not
apply to you. This warranty provides you
with specific legal rights. There may

be other rights that you may have which
vary from state to state.

DOS, INTEGER BASIC, FID, and COPYA, are
copyrighted programs of APPLE COMPUTER,
INC., licensed to Southern California
Research Group to distribute for use only
in combination with quikLoader.

Fase 2

Table of Contents

What is a auiklLoader
Installation
Apple //e
Apple 1L and Aeple 1l Plus
aquiklLoader USR § Jumper
Motherboard USER i Jumper
Modifyine the 16K RAM Card
ROM Select Jumeers
Chie 0 256K Jumpers
aqui kLoader Chainss DMA IN / DMA OUT Jumpers
Operation
Some Basic Hardware Features
The Power-ue Reset
Resettine the Apple //e
Resettine the Apple 1[and Aeple 1[Flus
The Selectable Resets
qui kLoader Katalos (@-reset)
QLOS File Types
The Katalos Diselay
Scrolline (left arrow. risht arrow. space)
Prosrammins GLOS Compatible EPROMS
EPROM *
quikLoader Addressins Ranses
The Katalos Record
Prosrammine Examples
Example |
Primary Routines
Example 2
The Toe Overhead
The Kataloe Record
The Primary Routine
GETSLOT Overhead
Inputs to Primary Routines
Toe Overhead
27256 Prosrammine Considerations
27128/27256 Prosrammins Considerations
The Chie 0 Subroutines .
Hish RAM Control
Apple //e INTCXROM and SLOTC3ROM Soft Switches
Runnine Prosrams Resident in the auikiLoader
QLOS Memory Usase
Commercial Developement of auikLoader Prosrams
Hardware Description
Apcendix A - QLOS Command Search Flowchart
Appendix B - Expunsine DOS from disks

Fiosures

Q@D NO U & AP -

10
11
12
13

14

Appendix A - quiklLoader Command Search Flowchart..
Appendix B - EXPUNGE Source/Object Listing........

USER 1 Jumper Prior To RFI Revision......cecvevensees
USER 1 Jumper - RFI RevisioOn...cuieveneeececscsnnscacs
16K RAM Card Modification..ceeeececerereencenencnanns
Super RAM Card Switch Setup....vvviveccecnscrannannns
quiklLoader Fhotaraph (two sides)ci.ieiceecvencnennnes
The Katalog Display.cececeescccresenconecncnsnnscnces
EFROM Addressins on the auikloader........ccceveeueas
The Kataloo Record.c.cccececcccercacncecavacncennnenes
The Katalog Entry..eceeeioesessvenesenoccancecccnnnns
Example | Overhead Source/Object Listins.............
Example 2 Overhead Source/Object Listing.......cec0..
OLOS Equate Table..ccessscoeesscessscnocsancsonssanns
quiklLoader Block Diasram....cecoeceeccacccscacconesce
aquikLoader Schematic Diasram...cveeverccecscrconsnnese

Tables

1 Top Overhead....cccceeccenecsnacscssncsnsccvossasescne
2 The Chip 0 Subroutines..c.eceeecsseccococnvascscocncene

Pase 3

Fase 4

What is a oguikl oader™?

A aquikLoader is a firmware peripheral card desisned for use in the
Arple 1L, Apple 3L Plus. and Arple //e computers. It will hold up to 256K
(262144) bytes of data and prosrams. Because the data and prosrams are stored
in EPROM or ROM. they are instantly available to the computer orerator at any
time.

The auikLoader provides the user an unprecidented level of sereed and
convenience in accessin® the prosrams he uses most often. Many valuable
programs are rarely used by their owners because of the inconvenience of
locatine the correct diskette and loadins the prosrams. Whatever the value of

a program to you, it will become more valuable if vou install it on the
aui kLoader.

The auikLoader is supplied with several eprosrams resident: QLOS (the
QuikLoader Operatine System), DOS 3.3, Inteser BASIC. FID, COFYA, and a BLOS
helr screen generator. DOS, Inteser. FID. and COFYA are prosrams from the
Apple DOS master disk and are distributed under license from Apple Computer.
Inc., OLOS is a prosram written for the auikLoader which supports a variety of
operational features includine immediate availability of DOS and Inteser at
power-up, loadine RAM and runnins of Applesoft. Inteser, or Binary files.
execution of auiklLoader resident erimary routines, Katalossine (as opposed to
disk catalo9eine) of OLOS files, and execution of a number of reset functions
selected via the kevboard.

Fase 5

Installation

The auikLoader can be installed in any slot of an Apple 11 excert slot
0. Installation in an Apple //e is very easy, but installation in an Apnle 1C
or Apple [Flus reaquires some extra sters. Also, if vou install more than one
quikLoader in any Apple II, you should read "auikiLoader Chainss DMA IN / DMA
OUT Jumpers". Also read the same section if you wish to install a auikLoader
in the same Apple as an Applesoft or Inteser 12K firmware card.

Apple //e

Install the auikLoader in any slot of the Apple //e. It will orerate
in slot 3, even if an auxiliary memory card is installed in the auxiliary slot.
The USR { jumper on the auikloader must not be soldered when the auikloader is
installed in an Apple //e. The quikloader is manufactured with the USR 1§
jumper desoldered so you don’t have to do anythine to the USR 1 jumper when
installine a new auikLoader in an Apple //e.

Apple 1L and Apple JL Plus

The Buick Loader can be installed in any slot except slot 0 in an
fApple 10 or 130 Plus. A48 of motherboard RAM is reauired. A 16K RAM card in
slot O is not absolutely reauired, but if you have a 16K RAM card, the
auikloader will automatically transfer Inteser BASIC and the motherboard
monitor to the RAM card at power up and other times you select it. However, to
operate with the auiklLoader, the 16K RAM card must be modified so that it is
disabled by system reset. just as the Apple //e built in 16K RAM card is.

A second reaquirement in the Apple J[or Apple 1[Plus installation is
that the USER 1 jumper on the motherboard and the USR { jumper on the
quikLoader must be made. This will enable the auikLoader to reseond to
$C100-$C7FF addressina as is reauired in some 27128/27256 data formats. The
RAM card modification and USER 1 jumeer installation reauire some minor
solderins. If you have no solderine exverience, vou should take your Apple 1(
or JL Flus: auiklLoader, "auikLoader Reference Manual", and RAM card to an Apple
dealer who is willina to perform the work. Apele 1L / J{ Plus related
installation erocedures follow.

Fase &
aui kLoader USR 1 Jumper

The USR 1 jumeer is located near the edse connector of the auikLoader.
Bridse the sap on the USR i jumper with a small amount of solder.

#+ Fisures 1 and 2 makins the motherboard USER { jumper

Motherboard USER 1 Jumper.

This is an unmarked jumper on the motherboard of Apple 1[s and Apple 1L
Pluses. 1t is located to the risht/front of slot 7 as shown in Fisure 1 in
older motherboards and Fisure 2 in RFI Revision motherboards. The pair of
holes can be mated by a short jumper wire if vou remove the motherbaord and
work from the bottom, but Fisures 1 and 2 show alternate solder holes which vou
can jumper from the tor without motherboard removal.

To install the jumper, remove power from your Apple and disconnect the
power cord. See which fisure matches your motherboard, and desolder the
indicated solder holes. Cut and strip a short insulated wire jumper and solder
between the two solder holes. Reconnect the power cord.

Modifyine the 16K RAM card.

NOTE OF CAUTION:

Modifyins your RAM card may result in voidance of the RAM card warranty if it
is still in effect. It may also result in hisher out of warranty repair costs
should your RAM card fail. The decision to make such modification rests soley
with the owner of the RAM card and he or she is soley responsible for any
nesative consequences of the modification. WNeither the Southern California
Research Group nor its associated ensineers acceet any responsibility for your
decision to make this modification.

#¢ Fioure 3 RAM card modification

FIGURE 3 CAN BE FOUND IN THE BACK

Pase 7

Frocedure:

Ferform the followine steps Resardless of RAM card manufacturer. Refer to
Fisure 3Z.

1. Locate the 74LS175 IC on the RAM card, Trace the conductor from pin i of
the LS175 to the junction of a 10 microfarad caracitor and a resistor.

2. Disconnect one lead of the capacitor and one lead of the resistor from the
PC board. Insulate these open leads with tare or heat shrink.

3. Connect an insulated wire between pin § of the LS175 and epin 31 of the
edse connector. Golder the wire to the toe of the edse connector soc the
solder does not make contact with pin 31 of motherboard slot when the RAM
card is installed.

Ferform the followine ster if vou have an R.H. Electronics Sueer RAM Il card.

1. Set switch 1-2 on the DIP switch to down. This disables the ROM or PROM
on the 16K card.

++Fisure 4 very small fisure shows R.H. elex RAM card switch

FIGURE 4 IS IN THE BACK

Ferform the followine steps if you have an Apple Lansuase System card.

| 1. Remove the ROM or FROM from its socket.

| 2. Remove the 74L820 from its socket and bend pin & so it will not make
contact in its socket. Reinstall the 74L520.

3. Solder a jumper wire between pins 4 and 5 of the 74L509.

4, 1f the ROM that was removed from the RAM card contains the system monitor
vou desire, reerlace the motherboard F8 ROM with this ROM.

N ——

-

Fase 8

ROM SBelect Jumpers

Befare installine your auikLoader in vour Apple. take a moment to
examine it visually. There are eisht ROM/EFROM sockets, each of which can hold
a 2716 (2K byte), 2732 (4K), 2764 (BK), 27128 (1K), or 27256 (16K) EFROM or
equivalent masked ROM. There are two solder pad jumpers associated with each
socket: a split circle pad on the comeonent side and a bow tie pad on the
solder side (see Fisure 5). These pads sust be chansed for a socket if you
elect to install a 24 pin chie (2716 or 2732) in it. When confisurins these
jumpers for a socket, there is always electrical contact across one jumeer ar
the other. Here are the two possible confisurations:

BOW TIE SPLIT CIRCLE IC TYFES
MADE DESOLDERED 2744, 2712B. 27256
cur SOLDERED 2716, 2732, 2764

The auik loader is delivered with all sockets confisured for 2764/27128/27256.
Please note that 2744 will work with either jumper confisuration. Also notice
that when 24 pin ICs are installed in the 28 pin auiklLoader sockets. they are

installed in the lower 24 pins as shown in Fisure 5.

«# Fisure 5 nphotosrarhs of both sides of auikloader.
must show jumpers clearly and point out
24 pin chip installation in 28 pin socket.

Chip 0 256K Jumpers

There is an additional pair of solder pad jumpers for chip 0 (labeled)
256K. These are made one way if 27254 is installed at socket 0 and the other
way for the smaller ROMs. The auikLoader comes with the jumpers made correctly
for the IC type installed. If vou remlace a 256K chie ¢ with a non-256K chis O
or vice versar you must chanse the 256K jumpers.

aui kLoader Chainss3 DMA IN /7 DMA DUT Jumpers

The DMA IN and DMA OUT jumpers are located near the edse connector of
the aquikiLoader. These need to be soldered when more than one auiklLoader are
used in a siven Apple. The auikLoader hardware and QLOS support kataloseins,
runnine, and loadine of files in such multiele confisurations as lone as the
aquikLoaders are part of a continuous chain of cards. For examele. you can have
one auikLoader in slot 2, two unassociated cards in slots 3 and 4. and
aquikLoaders in slots 5 and &. This would sive the user instaneous access to ue
to 76BK bytes of data and prosrams. The unassociated cards in the chain must
have pins 27 (DMA IN) and 24 (DMA OUT) jumpered tosether. This is because the
DMA IN/OUT priority chain is used srioritize the auikLoaders with the hishest
priority auiklLoader in the lowest numbered slot. The followins rules should be
observed when installins more than one auikLoader in an Applet

Pase 9

no empty slots between auikloaders.

All unassociated cards between auiklLoaders have pin 27 jumpered to 24.

DMA IN must be soldered on all but hishest eriority (lowest slot)
auikLoader.

DMA OUT must be soldered on all but lowest priority (hishest slot)
auiklLoader.

No DMA cards can be in the auikLoader chain. This includes alternate MFU
cards (e.9. 280 cards), DMA based manual controllers 1ike SCRB’s D MAnual
Controller. and DMA based 1/0 controllers. DMA cards should be outside of
the auikloader chain and isolated from it by an empty slot or by
desolderine the hishest priority DMA IN jumper or the lowest priority DMA
0UT jumper, whichever is appropriate. Note that DMA cards can be
installed in an Apple with a quikloader. They just cannot be installed
within a chain of two or more auikLoaders.

The Applesoft and Inteeer 12K firmware cards also use the DMA IN/OUT chain
to prioritize multirle firmware card confisurations. GLOS does not
support a mixed chain of 12K firmware cards and auikLoaders, so 12K
firmware cards should be isolated from auikLoader chains just as DMA cards
(described above in rule 5).

Fage 10

Operation
Some Basic Hardware Features

There are sockets for eisht ROM chips on the quikLoader referred to as
chip O throush chip 7. When the auiklLoader is enabled, one of these eiasht
chirs is selected for response to addressing in the $C100-$FFFF ranse and
motherboard response to this ranse is inhibited. Any time an Apple reset
occurs -- when RESET is pressed. at power up, or when a peripheral card pulls
RESET’ low -- the aquikloader is enabled with chip 0 selected. The result is
that an Apple reset will always cause the Apple’s 6502 MFU (Micro Processine
Unit) to start erecutine a prosram stored in chip 0 of the hishest eriority
quikloader. The prosram that the 4502 executes is QLOS.

The action OLOS takes at reset derends on the key which the operator
last pressed or is pressine, and the state of the power-uep byte ($3F8) as
compared to the hish byte of the Autostart soft reset vector ($3F3). By
pressing the desired key concurrently with CTRL-RESET the operator can select
from a variety of resets such as normal reset, forced rower up, forced disk
boot, aquikLoader katalos. executine prosrams on chips, etc. After GLOS
processing, the auikLoader is disabled and motherboard processins is renewed.

Besides interprettine the keyboard at system reset. BLOS performs many
functions which make the auiklLoader a usable device. Knowledse of these
functions is of no particular use to an operator but is very useful to
erosrammers. If you are interested, piease read the sections hesinnine with
"Prosrammine Primary Routines".

The Power-ur Reset.

QLOS interprets the power-ue byte exactly as the Autostart ROM does.
I $3F4 contains the exclusive OR of $AS and the contents of $3F3, the Apple is
considered to have previously powered up. If $3F4 is not correctly set, a
power-up reset is performed. But the OLOS power-up reset is different from the
Autostart power up. Instead of bootine the disk, QLOS performs the power-up
routine on chir & of the hishest priority aquikLoader. In the chip & supplied
with the auiklLoader, this power-up routine transfers Inteser BASIC to
$E000-$F7FF of hish RAM, transfers the motherboard monitor to $FBOO-$FFFF of
hioh RAM, transfers DOS 3.3 to its normal operatine location in RAM,
initializes DOS, and enters Applesoft. This is all performed so fast that, for
all pureoses, the Apple powers up with DOS and Inteser instantly available.

The power-up routine may be chansed by chaneine chip & (see "Example 2,
The Primary Routine"). This means that the auikLoader can power ue with any
application oreratine, and only data disks, not prosram disks, need be resident
in disk drives.

Resettine the Apple //e

Page 11

NOTE:
A chip with a power up routine must be installed in socket & of the hishest
priority auikloader.

NOTE:
When QLOS transfers and initializes DOS, the "last accessed drive” is alwavs
set to slot &, drive i.

In the Arple //e it is possible for a prosram to tell if a key is beine
held down. OLOS uses this feature to force a normal reset unless a kev is held
down while CTRL-RESET is er d and rel d. I1f no key is held or an
undefined key is held while RESET is pressed. the motherboard reset is
performed {or the RLOS power-up reset is performed if the power-up byte is
bad). Therefore, if you never hold a key down while you press and release
CTRL-RESET, the operation of the Apple //e will remain unchansed with a
qui kLoader installed, excert when the power-up brte is not risht.

To select one of the special resets, vou must press the desired kev
while pressine and releasine control reset. For examele, to katalos the
quiklLoader files, press CTRL and "@" with the left hand. press and release
RESET. then release the CTRL and "@" keys. BGLOS will wait until you have
released "Q" before merformine the katalos.

Holdine a key down overrides a bad power-ur byte in the Apple //e. for
example: if you perform a @-reset and the power-up byte is bad, QLOS will fix
the power-up byte and perform a katales. not a power-up reset.

The //e open Apple and solid Apple keys force disk boot and diasnostic
execution just as they do when auiklLoader is not installed. @LOS looks for
these keys and immediately exits to the motherboard reset handler if one of
them is beins held down.

Pase 12
Resettine the Apple 1L and Apple 1L Plus

In the Apple)L and 1C Plus. prosrams cannot test for "any key down".
As a result, OLOS interprets the last key pressed before a reset to determine
which selectable reset to perform. This has advantases and disadvantases over
//e overation. The advantase is that vou don’t have to hold a key while you
press CTRL and RESET. To perform a Q-reset, vou press "@" and release it, then
you press and release RESET or CTRL-RESET as vou normally do with your Apple.
The disadvantase is that you must set into the habit of pressins "A" before
RESET when you want a normal motherboard reset. Otherwise, OLOS will possibly
interpret the last key press as a reset selection vou really didn’t intend to
make. Quite often, this accidental selection will put you in the monitor.,
simply because the ASCII for RETURN is identical to CTRL-M, the monitor select
key, and RETURN is often the last previous omerational keyveress. The A-reset
forces a motherboard reset if the power-up byte is sood and a QLOS power up if
the power-up byte is bad.

A second feature of 1L / 1[I Plus oreration is that a keypress will not
override a power-up reset if the power-up byte is bad. This is necessary in
the 1L and JI Plus so the reset which occurs at power up is not random. The
one excertion to this rule is an M (no CTRL)$ CTRL-RESET. This is the sole
reset which overrides the power-up byte and causes an entry to the system
monitor. Because of the M-reset override, some Acple 1ls or 1L Pluses may
occasionally power ue in the monitor. If this happens, vou may then perform a
l-reset (move Inteser and monitor’ move and initilize DOS). If you experience
the occasional monitor power up and your amplication will not tolerate it,
contact SCRG at (- -) for consultation. The M-reset override is a
compromise which should eive most owners maximum system usefulness. But the
feature can be deleted from QLOS if necessary.

The SBelectable Resets

A list of selectable GLOS resets follows. Where possible. the kevs
were selected to help you remember the selected function (such as D for disk
boot). In other instances, the keys were selected for proximity to the CTRL
key. This minimizes the dexterity reauired to select a reset. Followine this
short list is a more detailed descrirtion of each reset type.

Pase 13

KEYBOARD RESET COMMANDS

7 - Move Inteser, monitor. and DOS to RAM; initialize DOSs enter FP.
n - (number 0-7) Do routine on chie n.
@ - quikioader kataloe.
H -~ “Z-reset® then execute HELLO.
B - (boot only) Move DOS to RAMs initialize DOS: enter Applesoft.
D - Disk boot.
C - Catalos the disk.
M - Enter monitor (ditto RETURN).
§ - Soft reset (slot O 14K RAM card reset).
X - Go to mini assembler.
A-reset

Vector to contents of $FFFC/$FFFD on motherboard if power-up byte is wood.
Perform power-up routine on chip & if power-ue byte is bad. Undefined key
causes A-reset.

Z-reset
Move Inteser BASIC. motherboard monitor, and DOS to their normal RAM locations.
Initialize DOS and enter Applesoft.

n-reset

Press a number, n, between zero and seven in conjunction with RESET to perform
the n-reset erimary routine of chie n on the hishest priority auikLoader. The
primary routine which will be executed on a siven chip is identified by an
inverse "P" in its kataloe diseplay. An n-reset to a socket with no chie
installed causes unpredictable results. If you accidently do this, simply
reset the system asain, selectins the reset type you desire. Chirs with no
n-reset routine can be prosrammed so n-reset will fall throush to the same chip
number on the second hishest eriority auiklLoader. The chip 0 and chip 7 that
are supplied with the auikioader have nc erimary prosrams. but are prosrammed
to fall throush on n-reset.

An n-reset is not the only way to execute a srosram. It is a very easy wav to

run a sinele hish eriority srosram on each chier, Most prosrams will be run via
the D-reset and up to 256 prosrams may be katalossed, loaded, and/or run usins

the @-reset.

Q-reset
quikLoader katalos, load, and run. Please see the followins section,
“quiklLoader Fatalos (B-reset)".

H-reset

Perform the functions of the I-reset then execute a prosram on a disk named
HELLD (slot &, drive 1). Note that this is not the same as executine a DOS
hello prosram. The DOS hello prosram is a special prosram whose name is
selected at disk initialization. Its name is usually HELLO, and the H-reset is
a convenient way of executine this prosram when it is named HELLO.

B-reset

Fase 14

Baot only. Move and initialize DOS and enter Applesoft. This is like a
1-reset excert Inteser and the monitor are not transferred to RAM.

D-reset

Force a disk boot. The D-reset clobbers the power-up byte then enters the
motherboard reset handler. This will force a disk boot if the Autostart ROM is
resident on the motherboard. This sives the capability of overridine software
which hanes the Apple via the soft reset vector. It is similar to the open
Apple reset of the Apple //e, but it does not systematically modify RAM as the
oren Apple reset does.

C-reset

Catalos the last accessed disk. This is a convenient way to evade tyepins the
most often entered command in the Apple reeertoire. It does not transfer and
initialize DOS so DOS must be resident if C-reset is to work. After
cataloseins, the last active BASIC is reentered without destrovine any resident
BASIC prooram.

M-reset

Enter monitor. RETURN-reset also forces monitor entry. M (no CTRL) reset is
the only selectable reset that will override a bad power-up byte in the Apple
3L or Apple)L Plus. The M-reset disconnects DOS and sets ue the screen
display and keyboard as primary output and input. For this reason. M-reset is
undefeatable from software. Perform an A-reset to reconnect DOS.

S-reset

Soft reset causes execution of the slot ¢ 16K RAM card reset handler in the
Arple 1L and Apple 1L Plus. This will enable Pascal and CP/M users to perform
the soft reset reauired by these systems. This is necessary because the
modification to the RAM card, reauired for operation with auikLoader. causes
the RAM card to be disabled when RESET is pressed.

S-reset does not cause a vector to the reset handler of the built-in 16K RAM
card of the Apple //e. This is because QLOS soes to the RAM card via a "JMP
($FFFC) " stored in pase | of memory. It is a feature of the Aeple //e that a
“JMP (SFFFC)” executed from pase | disables the built-in RAM card for readins.
This secret feature was discovered durins the debussine of OLOS. 1t doesn’t
particulariy harm auikiLoader operation, because the S-reset is only desisned to
resain a carability which was taken away from Apple 1{ and I Plus users by the
RAM card modification.

X-reset

Transfer Inteser BASIC and the motherboartd monitor to hish RAM and enter the
mini assembler with hish RAM enabled for readine and writine. The mini
assembler is one of the nicer features of the Apple. X-reset will set you
there in a hurry.

Pase 15 Fase 16
B S1 C6 FID
aui klLoader Katalos (B8-reset) P G1 Cé COFYA
The Q-reset is the primary means by which various QLOS prosrams are ? g: g: gg;¥ LOADER/ALOS HELP
selected and run. OLOS kataloseine is similar to disk catalossins, but it is P Si C4 SPLIT SCREEN
faster and more versatile. The katalos can be scrolled forwards and backwards A 51 C4 GRID
if the number of entries exceeds the size of the screen. Proorams are selected P 82 C3 APA
and run by pressine a sinole key. Coupled with virtually instantaneous data B §2 C3 EXPUNGE DOS
transfer, this leads to a level of convenience and utility unknown to Apple P 52 C2 VISICALC
users before the developement of the auiklLoader and GLOS. P 62 CO EDITOR
P 82 CO ASSEMBLER

QL0S File Types

QLOS supports loadins and/or runnins of four tyees of files. These
| are!?

A files -— Applesoft files
B files -— Binary files

1 files -—- Inteser files

P files --- Primary routines.

The A, B, and 1 files are just like A, B, and 1 DOS files. It is quite easy to

take A, B, and I DOS files, store them consecutively in an EPROM buffer, add a

QLOS format kataloe record, and burn an EPROM with your own choice of A, B, and '
I files instantly available via the Q-reset.

E<C-MIODIVIOZIrXReG =IdNTIMODOT D

| The A, B, and I files are all transferred to RAM for runnine. A files
! are transferred to low memory, and I files are transferred to hish memory just _
' as if they were loaded from a disk. The B files are loaded to an address ' Fisure & - The Katalos Diselay
i specified in the katalos entry for that file. There is no erovision in OLOS
for specifying alternate RAM destinations for B files.
The P files are unique to GLOS. They are files which are actually run ::N:;:e::e:d:zo;;n:?ed:a?:xt to COPYA, APA, VISICALC. and EDITOR must
while resident in the auikiLoader and will be referred as primary routines. The
object of primary routines is to transfer combinations of orosrams and data to
RAM for initialization and execution. For example, COPYA is an Applesoft
prosram which normally "BLOADS" COPY.ORJ from a disk. It is implemented in the
3 auikLoader as a primary routine which transfers the COPY.OBJ prosram to RAM,
transfers COPYA to RAM, and runs COPYA. Similarly, any erosrammine aenlication
which reauires operations more comelex than runnins or loadine of a sinsle A,
B, or 1 file would have to be implemented via a primary routine.

Paze 17
The Katalos Diselay

Performine a B-reset with a auikLoader installed in vour Apple results
in a screen display showins the auiklLoader resident files. Fisure & shows the
katalos display of a auikLoader with some prosrams added. In addition to the
name of each file, the display shows a selection index, a file identifier, and
the slot and chir number of where each file resides. Also, by pressine 1. you
can display the source, lensth, and destination parameters for each file.

On the far left side of the katalos diselay are the letters "A" throush
"W" in a sinele column. These letters are the file selection indices for the
kataloesed files. For example, the name COPYA is next to the letter "B". If
.you press "E" on the keyboard, you will run the primary routine. COPYA.
Similarly, any prosram the katalos diselay can be run by pressing its index
letter.

In addition to the letters A-W, other keys perform special functions as
follows?

ESC Escare from katalos to BASIC.

Cause loading instead of runnine, After pressins Y, pressine the index
letter for an A. B, or 1 file will cause the prosram to be transferred
from the quikLoader to RAM, bun not run.

7 Tosele the parameter diselay. This enables the display of source,
leneth, and destination information as an aid for persons prosrammins
QOLDS compatible FROMS. When the parameter disrlay is on. the file
names are truncated to nine characters instead of their normal 29. The
source parameter is the base address of an A, B: or I file or the
primary routine in quikloader. The lensth parameter is the lensth of
A, B, or 1 files. The destination parameter is the destination in RAM
of B files. The lensth parameter is meaninsless for erimary routines,
and the destination parameter is meaninsless for A files, 1 files, and
erimary routines,

Pawe 18
Scrolling (left arrow, risht arrow, and seace)

1§ the number of aquiklLoader files exceeds 23. then only the first 23
files will be displaved after a @-reset. In this instance, vou must scroll the
katalos display to eain access to files not on the current display. Press
right arrow to scroll forward one file. FPress left arrow to scroll backwards
one file. Press space for continuous scrollins in the direction of the last
arrow press., Press risht or left arrow to stor the continous scrollins and set
the direction.

When scrolline forwards, the diselay will scroll to the last file then
stor. When scrolline backwards, the diselay wraes around from file O to file
255. 1f, as normal, there are less than 233 katalos entries, this will cause
the screen to 9o blank. If vou find vourself with a blank screen and wish to
wet rid of it, press risht arrow then space. After a short while the display
will reappear.

The maximum number of kataloe entries which can be displayed and
selected by OLOS is 256. After entry number 255 is printed to the screen, the
display wraps around to entry number 0. If vou exceed 256 entries, there will
be no way to access the extra files.

Page 19
Frosrammine QLDS Comepatible EFRDMs

OLOS compatible EPROMs are filled primarily with prosrams and data,
packed in tishtly with no space between them. Additionally, GLOS EPROMs have a
certain amount of chip overhead. Chip overhead is data which is not part of
the usable OLOS files. but is present to supeort GLOS formats. This overhead
includes a katalos record and some other data which is reauired for QLOS
oreration.

1f a chip has no primary routines. its overhead bevond the katalos
record is very minimal and straishtforward. This means you can easily learn to
program GLOS EPROMs with any number of Applesoft, Inteser, or binary srosrams
available for transfer and execution. Frosrammine primary routines is more
complex., There are several possible variations of overhead reauirements. and
more knowledse of BLOS and auikLoader structure is reauired. Primary routines
aren’t particularly difficult to write: but writine primary routines is more
difficult than packins A, B, and I files tosether with a katalos record.

EPROM

EPROM stands for Erasable Prosrammable Read Only Memory. It is
non-volatile, which means that, like masked ROM. the data in EPROM cannot be
altered in the course of normal operation. When vyour data is in EPROM. it is
always available, just as the BASIC and monitor in ROM are alwavs available in
the Apple. Unlike ROM, however, EPROM can be erased and reprosrammed.

The acronym EPROM is used to refer to ultraviolet lisht erasable PROM.
This UVEFROM has been in use for years, and is the type of EPROM you will
probably use in the aquikLoader. UVEPROM has a little transparent window in the
tor. Shinins lisht from a common uitraviolet lame throush the window will
erase a UVEFROM in about 20 minutes. A small UVEPROM eraser with a timer can
be purchased for arproximately $50.

A second type of EPROM is EEPROM (Electrically Erasable PROM). EEPROM
is pin compatible with UVEPROM and can be used in the auikLoader. EEPROM is a
much more recent developement, thoush, and UVEPROM is less expensive and in
more common usase than EEFROM.

EPROMs and ROM which can be used in the auikLoader are compatible with
the Intel 27nn series. These include

2716 2K bytes / 16K bits
2732 4K bytes / 32K bits
2764 8K bytes / &4K bits
27128 16K bytes / 128K bits
27256 32K bytes / 256K bits.

You can proeram any of these sizes of chirs for the auikLoader, and erasrams
you puchase for the auikioader may come on any of these sizes of chirs. Size,
cost: and availability will enter into consideration when decidine which type
of chir to enter your srosrams on. 2764s sive you a reasonable size of chir

Fase 20

for about $10 retail. 27128s are a sood deal more exeensive and hard to come
by. 27256s are ericed out of this world and nearly impossible to obtain as of
December 1983. The erice and availability of 27128s and 27256s are exrected to
become much more reasonable in 1984. As this occurs, vyou will be able store
larger amounts of data on the auikLoader while remainine solvent.

To prosram EPROM:; you need an EPROM burner. This is a device which
will prosram EPROMs from a source file in some sort of computer. PROM burners
exist which can be plussed into-an Apple, and this is probably the tyre vou
will want to use for aquikLoader EFROMs since you will burnins Aeple files into
EPROM. It will be desireable for your PROM burner to be carable of burnins
2764, 27128, and 27256 EPROMs. The auikLoader can utilize the smaller 2716 and
2732 EPROMS, but these EPROMs reduce the capacity of the aquikLoader. Remember
that one 27128 holds the same amount of data as eisht 2716s or four 2732s.

PROM burners of various sorts can be purchased from electronics stores
and computers. SCRG is in the process of develorine a inexpensive FROM burner
that will burn 27nn series EPROMS up to 27256s. This PROM burner is scheduled
for release in 1984,

quiklLoader Addressins Ranses

The auiklLoader addressing ranse is from $C100 to $FFFF. This is a
ranse of 128K bytes minus 256. Fisure 7 shows the ranse at which each tyvre of
EPROM is addressed. As Figure 7 illustrates, the addressine ranses used for
the smaller chirs are the hish portions of the aquiklLoader ranse. This is
strictly a BLOS convention since the auikioader hardware will let you address
the smaller chips at more than one ranse. For examele, a 6502 prooram can
access the data in a 2732 at $FO00-$FFFF, $EOQ0-$EFFF, $DO0Q-$DFFF, or
$C100-$CFFF. QLOS. hawever, will only access 2732 data at $FO00-$FFFF.

You may have noticed that the $C100-$FFFF ranse does not allow access
to the bottom 256 bytes of data in a 27128 or 27256. This 256 brvtes is not
usable for storase of A, B, or I files or the katalos record. It is usable for
storase of data accessed by primary routines usine techniaues described under
"27128/2725b Prasrammine Considerations”. For EPROMs with no primary routines,
the maximum amount of accessible data at a sinsle socket is less than 14K brtes
(16384 - 256 = 16128 usable bytes). For 27254s, only one bank is available for
A, B, and 1 files and the katalos record. Therefore, 27256s are only practical
when they contain at least one erimary routine.

*+ Fioure 7 address ranses of various size EPROMs in auikloader

FIGURE 7 CAN BE FOUND IN THE BACK

- ird
Fage 21 Pase 22

The Katalos Record ASCII name of QLOS file:

The katalos record of a QLOS EFROM is made uer of individual katalos
entries, stored seauentially starting at some base address. The base address
of the katalos record of a GLOS EFROM must be stored at $FFFB and $FFF9 of the
EFROM. If there is no kataloe record on a BLOS EFROM, this must be identified
by the value $FFFF or a value less than $C100 at $FFF8 and $FFF9, (It is
possible that an EPROM will have no katalos record if it contains only data
which is accessed by a primary routine on a different chip,)

Figure 8 shows the format of the kataloe record and Fisure 9 shows the
format of a sinele entry in a katalos record. The entry contains a file
identifier, source/lensth/destination parameters, and ASCI1 for the name of the
file as it appears on the katalos screen disrlay. A typical kataloe entry
takes ur about 20 bytes, so an EPROM with 10 GLOS files would reauire about 200
bytes for the katalos record, derendine on the lensth of the file names.

1D SLO SHI LLO LHI DLO DHI NAME
ID SLO SHI LLOD LHI DLO DHI NAME
ID SLO SHI LLO LHI DLO DHI NAME
ID SLO SHI LLD LHI DLO DHI NAME
$86

$86 (CONTROL-F) TERMINATES KATALOG RECORD

Fisure B - The Katalos Record Format

All ASCII above $BF is valid. This includes numbers. upper
case, lower case, and special characters. It excludes
control, inverse, and flashine characters. Maximum name
lenath is 29 characters.

ID SLO SHI LLO LHI QLO D NAME

Destination of file in RAM.

meaninsless in A: I. and F files.

Lensth of file.
meaninsless in P files.

Source address of file in

qui kiLoader for A, B, and I files.

address of erimary routine.

File ID:

$8i (CTRL-A) = Applesoft prosram

482 (CTRL-B) = Binary prosram

489 (CTRL-I) = Inteser prosram

$90 (CTRL-P) = Primary routine

486 (CTRL-F) = Finish - terminate katalos record

Fisure 9 - Kataloe Entry Format

Pagse 23

Proerammine Examples

There are two parts to a GLOS compatible EFROM, the data files and an
overhead file. The data files are packed tosether by loadine them seaquentially
from disks to a buffer area of RAM. The overhead file is built serarately and
mersed with the data files in the buffer area. This mersed file is saved to
disk and loaded to the EFROM burn buffer when it is time to burn an EPROM.

To pack the data files, it is necessary to find the lensths and comepute
the startine address of the various files. A "Texas Instruments Prosrammer*
calculator is very helpful in computine the startine addresses. Prosramming
Examrle | demonstrates how to find the lensths of A, B, and 1 files,

Buildine the overhead file should be done usins a 6502
editor/assembler. It can be done by hand, but an assembler will make the task
much easier. Examples shown here were assembled usins Apple’s "DOS TOOL KIT®
editor/assembler. You do not have to know 4502 assembly lansuase prosrammins
to srasep these examples or to use an assembler for similar purposes. Excenrt
for the primary routines, no 6502 prosrammine is required.

The seneral method of the examples is to pack the data files startine
at the low address of the EPROM beine used ($C100 for 27128/27236. $E000 for
2768, $FO0C for 2732, $FBO0 for 2716). Overhead files start at $FF00, an
arbitrary but convenient startins place. This works out pretty well because
parts of OLOS overhead must be at hish addresses.

Example 1

makins a GLOS compatible chip with no primary routines.

Objective
Flace BOAT (1), SPLIT SCREEN (Bj. and GRID (A) on a GLOS formatted 2744 EPROM.

1. Calculate file lensths and arrange files tosether.

LOAD BOAT from disk.

<CALL -151

+$CA, $CB = $94493 lensth of BOAT = $9600-$9449 = $1B7
BSAVE BOATB.A$7449,L$1B7

PLOAD SPLIT SCREEN from disk.
+$AA72, $AA73 = $1F00 = SPLIT SCREEN destination
+$AAL0, $AALL = $003E = SFLIT SCREEN lensth

LOAD GRID from disk.

JCALL -151

+$69, $6A = $OB7F3 lensth of GRID = $87F-$801 = $7E
BSAVE GRIDB,A$801,L$7E

start BOAY at address $E000 (arbitrary)
BOAT resides at $E00C-$E1BS
SPLIT SCREEN resides at $EIB7-$EIF4

GRID resides at $E1F5-$E272

BLOAD BOATB,A$2000

BLOAD SFLIT SCREEN,A$21B7

BLOAD GRIDB,A$21F5

BSAVE BT.SFSCRN.GRD,A$2000,1L$273

Brine up the DOS TOOL KIT editor.
BRUN EDASM.OBJ

Enter followine text file:

ORG $FF00 START KATALOG RECORD AT $FFO0O
BOATK DFB $B9 CONTROL-I (INTEGER)

DW $E000 SOURCE

DW $01B7 LENGTH

DW $0000 MEANINGLESS DESTINATION

ASC *BOAT’ NAME
SPLTK DFP $82 CONTROL-B (BINARY)

DW $E1B7 SOURCE

DW $003E LENGTH

DW $1F00 DESTINATION

ASC *SPLIT SCREEN’
GRIDK DFP 81 CONTROL-A (AFPLESOFT)

DW $EIFS SOURCE

DW $007E LENGTH

DW $0000 MEANINGLESS DESTINATION

ASC °GRID’ NAME :

DFB 86 CONTROL-F ENDS KATALOG RECORD

DS $FFEF-* SKIP TO $FFEF

LDA #$00 REQUIRED CODE MUST BEGIN AT $FFEF
NOP .

STA $COB1,X

Ds 3

DW BOATK KATALOG POINTER AT $FFFB

DW $3FB NMI POINTER AT $FFFA

1SAVE EXAMPLE 1 OVERHEAD
1ASM EXAMPLE 1 OVERHEAD
LEND

Meroe data blocks with chie overhead.
JCALL -151

*2000¢FF

*2001 <2000, IFFEM

+BLOAD BY.SPSCRN.GRD,A$2000

+BLOAD EXAMPLE 1 OVERHEAD.OBJC, A$3FO0
+BSAVE TEST:A$2000,1$2000

Pase 24

Pase 25

TEST is now a valid QLOS EPROM source file. BLOAD it to your EFROM
burn buffer and burn it on 2764 EFROM.

The prosrams in Examele 1 are very short and will not fill uer an EFROM.
This means that if vou actually built this OLOS EFROM, you would have a lot of
room for future expansion.

EXAMFLE § OVERHEAD.OBJO in Example 1 is the chip overhead. The rortion
besinnine at $FFEF is tor overhead, and the tor overhead of Examele 1 is that
reauired when a katalos record is present but no erimary routines are present.
The "LDA #$00, NOP, STA $C0B1,X" seauence will allow fall throush to the second
priority quikLoader if an n-reset is performed to this chie.

#% Figure 10 example | overhead source/object listing

FIGURE 10 CAN BE FOUND IN THE BACK

Primary Routines

Frimary routines must be written when an aepplication can’t be
implemented usine straishtforward A, B, or 1 files. Use primary routines whent

1. a prosram is made up of more than one contisuous block of data.

2. a prosram exceeds the caracity of a sinsle EPROM.

Z. vou wish an important prosram to be activated by n-reset.

4. vou wish to utilize the first 254 bytes of a 27128 or 27256 EPROM.

S. you wish to make a prosram the power-up prosram in the event the host chie
is installed in chip socket 6.

The primary routine is actually a 6502 prosram, so you must be able to
write 6502 assembly lansuase orosrams if vou want to desion applications around
erimary routines.

The seneral idea of a erimary routine is to transfer combinations of
prosrams and data to RAM for execution. For example, COPYA is a combination of
an Applesoft prosram and a 6502 machine lansuase prosram. The primary routine
for COPYA first transfers the machine lansuase prosram. then transfers and
executes the Applesoft srosram. The erimary routines are part of the chie
overhead, separate from the blocks of data which are transferred to RAM.

Durine the course of primary routine execution, control mav be passed
back and forth between the chie containins the primary routine and chie 0 on
the hishest priority auikLoader. Tymically, chip O will initially call the
primary routine, then the primary routine will make several calls to routines
available on chie 0. then the primary routine will exit to some address on the
motherboard via the chie O GO TO MOTHEREOARD routine.

Fage 26

The passine of control back and forth is done via bank switchine
instructions at fixed locations in the tor overhead. "STA $C081,X" with slot
number times $10 in the M-reeister accomrlishes the switchins, and strict
protocol must be followed so prosram flow can proceed in an orderly way when
one chip is switched off and another is switched on.

The auikLoader confisuration resister receives the bottom five bits of
the accumul ator when the "STA $COBi.X" is executed. Additionally, 0LOS
protocol calls for the number of the exited chir to be in the toe three bits of
the accumulator. This results in the followine chie switchine control word:

ABC.0,U, DEF

where ABC is the exited chiep number
0 is the auikioader ON/OFF flier-floe
U is the suikLoader USR flip-flor
DEF is the entered chip number.

This protocol makes it possible for QLOS to execute a subroutine for a chie
then return to that chie.

A complete discourse on writine erimary routines encompasses several
related subjects. The followins analysis of Example 2 is meant to introduce
you to these subjects and sive you a feel for develorine EFROMs which include
primary. routines.

*% Fisure 11 example 2 overhead source/obiject listine

FIGURE 11 CAN BE FOUND IN THE BACK

Example 2

makine a GLOS compatible chiep with primary routines

Objective
Put FID (B), COFYA (P). and the auikLoader "HELP” screen prosram (A) on a GLOS
formatted 2764 EPROM. Include BETSLOT overhead and a power-up routine.

This example shows the overhead portion of the chip supplied with the
aqui kLoader in socket &, It serves as a sond erxample for several options you
may wish to exercise when prosrammine EPROMs for the auikLoader. Numbers in
parenthesis in the followins parasrarhs refer to line numbers in the E:xamele 2
overhead listing,

The data blocks of Example 2 are packed similarly to those in Exzamele
i, and the packine for this example is shown in lines 10-13 of the overhead
listine. For this example: only the overhead file will be discussed. but there
are two points about the data block packins which should be mentioned. First.
the statement in the Applesoft prosram which loads the COFY.OBRJ file in the
disk version is deleted. Second. the remarks are left in the Applesoft
proeram. This was done to faithfully reproduce the prooram as it is released

Page 27

by Aeple Comeuter Inc. In normal practice. you should expunse all remarks from
Applesoft prosrams stored on auikioader EFROMs becauses storase space is too
valuable to waste on remarks.

The Top Overhead

The top overhead (221-230) for Example 2 is the tor overhead which will
normally be found in a BLOS chip. It supports erimary routine entry from @LOS
(225 and 227), calline of chip 0 subroutines (224): return from chie 0
subroutines (227). a kataloe record pointer (229). and an NMI vector (230). An
IRQ vector is normally not necessary because all GLOS processine is with
interruet reauests disabled. You mav set up an IR@ vector and enable
interrupts durins a primary routine. but you should disable interruets before
calline chip 0 routines. The reset vector is not necessary because only chis 0
of the hishest priority ouikLoader is active just after a reset.

Lines 222 and 223 of the Examerle 2 top overhead are not mandantory.
They are part of the scheme by which this particular srimary routine calls chie
0 subroutines. You may find this method convenient in vour routines, but it’s
the prosrammer’s oertion.

The "JMP N.RESET" of line 225 will be executed after an n-reset to this
chip. N.RESET will be the label of the hish priority erimary routine which vou
wish to be activated by this convenient method.

The Fatalos Record

Line 229 shows that the first katalos entry beeins at FIDK/$FF00. The
l:atalos record shows three files FID, COFYA, and QUIK LOADER/QLOS HELP. COPYA
is the only erimary routine on this chie, but you can put more than one eprimary
routine on a chie,

Even thoush there is only one primary routine in this kataloe record,
there mav be any number of data blocks associated with the erimary routine. In
this particular example there are two data blocks -- an Applesoft prooram and a
binary prosram -- associated with the primary routine. The katalos entry sives
no information about these associated data blocks. They are handled by the
orimary routine. not G@LOS.

Note that the besinnins address of the primary routine, COPYA, is the
same as the operand of the "JMP N.RESET" stored at $FFEF. When diselavine the
kataloa. OLOS inverts the "P" file identifier on the screen for the file which
has this eaquivalence. The inverted "P" identifies the primary routine which
will be executed when an n-reset occurs for this chie.

Fase 28
The Frimary Routine

The primary routine. COFYA. bewins at line 1BO. This is also the
n-reset routine of a chir 6 compatible EPROM, so the action to be taken at
power up must be considered. The power-up status is passed in the 6502 carry
flas. [If the carry flas is clear at the beesinnine of an n-reset. then this is
a power-up entry to chip 4, the autostart chie. 1If the carry flas is set. then
this is an n-reset or @-reset entry to the erimary routine.

Besides the power-up status, the inputs from GLOS utilized by this
erimary routine are the control word in the accumulator and the slot number »
$10 of the hishest priority quikloader stored at FRISLOT/$246. The accumulator
control word input to the primary routine will be 000.}.1,DEF meanina chie 000
is calling chip DEF with USR hish., This should be inverted to DEF.0.0.000
(chie DEF callins chip 000 via FRISLOT turn on with USR low) to obtain the
control word reauired to make calls to chiep 0. INVERT (110) is a subroutine
which will perform this inversion.

The COPYA routine saves the power-up status (180), inverts and saves
the control word (181), then retrieves and interprets the power-up status
(182-183). If the carry flas is clear, the power-up routine is executed
(184-196) .

This power-up routine is what happens when vou turn vour Apple on or a
prooram sets the power-up byte for power up, It uses chip O subroutines to
move Inteser BASIC from the auikLoader to hish RAM, move the monitor from
motherboard ROM to hish RAM. move DOS from the auikLoader to $9D00-$BFFF of
RAM. It then sets the DOS command byte ($AASF) to $1B. (Settine this value to
$00 would result in the execution of a disk prosram named HELLD after the DOS
initialization). Next the Applesoft ONERR status is set so disk [/0 errors
will be handled by DOS. Then the initialization address minus one ($B73A) is
pushed to the stack, and the motherboard is entered and a DOS cold start is
performed. This power up is not a fixed feature of the auikLoader but a
feature of the chir supplied with the aquikioader in socket &. You can chanze
the power up by chaneins this chip, but vou should study lines 170-196 of
Examnle 2 for suidance. As an example. you can make the Apple enter the copy
proaram at power-uep by reelacine lines 191-196 with a "JMP DODCOFY".

The chip O routines are called by placins the index of the desired
subroutine in the Y-resister and jumpine to GOCHIPO in the top overhead. The
indexes cf the available subroutines are shown in lines 25-34. Complete
descriptions of the routines are siven in the "Chie O Subroutines" section.
For this discussion, the only important non-obvious point is that you must set
up source, lensth, and destination values for MOVERLK at $3A-$3F and vou must
set up source and lensth values for LOADFP, RUNFF. LOADINT, and RUNINT at
$3A-$3D and identically at $204-$207. This is so OLOS will know where to move
vour data block, Applesoft proeram, or Inteser prosram.

In Example 2, if a power up is not beine executed, the DOCOFY routine
at 205-219 will be run. This routine simply transfers the data block.
COPY.OBJ, to RAM then uses RUNFF to run the Applesoft oroeram. COPYA. The

Faoe 29

source. lensth, and destination values are set up from the OBJPARM and CFYPARM
tables (103-10B), Usine tables like these and comments like lines 10-13 in
vour overhead will help vou keer the data blocks associated with erimary
routines orwanized.

GETSLOT Overhead

Lines 42-74 and 118-169 are GETSLOT overhead. This is ostional
overhead which is required only for a chie operatine in socket ¢ of auikLoaders
other than the hishest priority auikLoader. Chip O on the hishest priority
quikLoader is filled with DOS, Inteser. and GLOS. But only a small portion of
OLOS is reauired in chipr O of the lower priority auikioaders.

The reauired code is the GETSLOT portion of Example 2. For it to
function, the "STA $C0B1.X" must be at $FF55, exactly as shown in line 122,
This is aquikiLoader turn-off code which must be carable of flowine to the *RTS"
located at $FFSB on the motherboard when a auikioader is turned off.

The presence of BETSLOT code at chie 0 of every auiklLoader allows each
qui klLoader. workins down from hishest priority to lowest priority. to locate
its slot and turn itself off at @o to motherboard time. At the end of this
oreration. a bit map of the slots with auikioaders resides at QLMAP/$2D. This
map is available for use by eprimary routines.

Why put the GETSLOT overhead in a chie & EPROM if it is only needed in
chip 0?7 Because there is room for it., Someday you may have more than one
quiklLoader in your Apple and want to utilize chie O in the lower priority
slots. Any chip with BETSLOT overhead can be used there, so it is a 9ood idea
to put GETSLOT into all of your EPROMs when there is room. Place the markine,
"CO OK", on chips which contain the BETSLOT overhead.

FPage 30
Inputs to Primary Routines.

Example 2 showed one method of utilizine a Frimary routine. but many
more are possible. For example You may move a screen menu driver to RAM and
execute it. This driver will then perform functions selected by the orerator

J includine 9oine back to the auikloader for more data or prosrams. When writine
such applications. the folowine list of inputs to erimary routines should help.

odd 256K bank _.___—_1

101DEF f4—— oL control resister

ey
qui kLoader ON
USR hish
entered chip
0 if called aL hishest priority
i1 if called aL not hishest pri. 1
—~A~

ABCX1DEF.4—— accumulator

exited chie ————-1

carry flas clear if power-ue.

X-resister slot number » $10 of hishest priority alL slot.
$26 slot number x $10 of hishest priority alL slot.
$27 slot number x $10 of called al slot.

$2C MSB reset if Apple //e3 set if Apple 1[.

$2D bit map of oL slots 1,2,3,4,5,6.7,»

//e SLOTC3ROM soft switch set to INTERNAL.
//e INTCYXROM soft switch set to INTERNAL.
called auikiLoader ON.

all other aquikLoaders OFF.

Page 31§

Toe Overhead

The hishest few addressed locatians on a quikLoader EPROM are referred
to as the tor overhead. The tor overhead includes such things as bank
switchine locations, the katalos eointer. and 6502 NMI*, RESET’» and IRQ’
vectors where appropriate. Examples i and 2 illustrate the two commonest types
of topr overhead. Table i1 shows how the various types of top overhead are tied
tosether.

The OLDS top overhead is interlaced with that on the other chips. This
is because switchins is senerally between QLOS and primary routines. For
example. when a BLOS "STA $CO0B3.X" is executed at $FFEC, a "JMP N.RESET" on the
called chir picks up the flow at S$FFEF.

The fourth column of Table § shows a type of torp overhead reauired for
an EPROM with blocks of data and prosrams on it but with no katalos record or
primary routine to move the data blocks. The katalo9 record and srimary
routines are on an adjacent chie. This sort of handline is reauired if your
data exceeds the caracity of the chips you are usins.

A primary routine can use the chip 0 routines to move data on a
separate chip by specifvine that chie in the tor three bits of the accumulator
control word. After execution of the move routine. however, flow will return
to the chip from which the data was transferred. The toer overhead in column 4
of Table 1 will relay the flow to the next hisher chip where the primary
routine resides. The primary routine can then continue erocessins. If you
chanze the "ADC #1* to "SBC #0", the return flow will be relaved to the next
lower chip instead of the next hisher, The column 4 top overhead also has fall
throush code to pass the n-reset to the second priority aquikLoader if there is
one.

-

It

Pase 32

Table 1 - Tor Overhead

QLos FALL, NO KAT NORNAL NINUS CHIP
GOPLUS LDX SECSLOT
AC 91
AND #SEF
BCC GOBACK
$FFEC GOCHIP STA $C0B1.X GOCHIPO STA $COBI, X
SFFEF JNP DOROUTS NP NP N.RESET NOP
$FFFL LDA %00 LDA 9400
$FFF2 GOBACK STA $C0B1,X STA $COBI,X 53 GOPACK STA $C081,X
Liit] NP FALL 0’3 RIS o
SFFFb 05 2 BCC 6OPLUS
SFFFB o 80000 D %0000 b ¥ATLOC DN 40000
SFFFA 0w s M 938 0N $3FB DN $3FB
SFFFC DN RESET

27256 Prosrammine Considerations

The natural addressine ranse of a 27256 would be $8000-¢FFFF, so the
27256 must be banked switched. It behaves like two bank switched 27128s and
all 27128 rules must be followed with 27254s. The odd bank is selected by
storine the accumulator control word at $COB1,X with slot number times €10 in
the X-resister. The even bank is selected by the same storaze instruction with
(slot number x $10) - i in the X-resister.

QLOS only looks for A, B, and 1 files and the kataloe record in the odd
bank. The even bank can be used only by primary routines. The chip 0 transfer
routines will use the even bank as the transfer source if you perform a "DEC
$26, DEC $27" before calline chier 0. This will result in (slot number x $10) -
1 in the X-resister at transfer set up time. $26, $27, and the X-resister will
be restored by QLDS upon return to the callins chie. Note that only $26 and
$27 were decremented before calline chip 0. The X-resister should always
contain slot number x $10 when calline chie O.

Example: LDX $26
DEC $26
DEC $27
JSR GOCHIFO

There is no GLOS top overhead reauirement for the even bank of 27256
chirs. The even bank is never enabled unless a primary routine switches to the
even bank or unless a transfer call to chip 0 is made after decrementino $26
and $27. Obviously, 27256s can only be used in connection with primary
routines.

Pase 33

NOTE:

The 27256 even bank can also be enabled if the chiep is in socket O of a lower
priority auiklLoader. See the discussion of GETSLOT overhead in the next
section.

27128/27256 Prosrammine Considerations

When prosrammine 27128s and 27256s, continsencies arise which don’t
have to be taken into account with the smaller chiers. You need to be aware of
these when prosrammine the bie chirs. In the followine discussion. assume the
natural addressins range of a 27128 or one bank of a 27256 is $CO00-$FFFF.

The first problem is with the GETSLOT overhead (see prosrammine Example
2). If vou wish to use a 27128 or 27256 in chie O of a lower priority
quikLoader, vou need to include the BETSLOT overhead. But with a 27128 or
27256, the "STA $COB1,X" must be at $DF5S5 instead of $FFS55. In other words, at
least part of the GETSLOT overhead must be in pase $DF, even thoush the toe
overhead is at the top of pase $FF. In a 27254, the "STA $COB1,X" must be at
$DFS5 of the even bank. This is a bit of a nuisance, althoush it is not an
insurmountable problem. Unless all of vour auikLoaders are full of 27128s and
27256s. the easiest thine is not to use these bis chies in socket 0. Just use
a 2764 there. If you really need a 27128 or 27254 there, vou will have to
break your data blocks in pase $DF.

The second thine you need to be aware of with 27128s and 27256s is the
effects of the USR flip-flop on the auikLoader. When USR is hish, all but 256
bytes of a 27128 or a bank of a 27256 can be addressed at $C100-$FFFF. The
$C000-$CFFF area of the chip is unavailable in this mode. When USR is low,
addresses in the $E000-$FFFF ranse access the bottom half of the 27128 or 27256
(the $CO00-$DFFF area). This means that USR bank switches the $E000-$FFFF
addressine ranee and that the bottom 254 bytes of the bie chips is accessable
at $E000-$ECFF when USR is low.

The GLOS katalo9 routine does not take advantase of the USR bank
switchine to access the bottom 254 bytes when loadins A, B, or I files or
readine katalo9 records. Therefore, A, B, and I files and katalo9 records must
reside in the $C100-$FFFF area of 27128s and 27256 odd banks. Primary routines
can easily access the bottom 256 bytes of the bis chips via customized bank
switchine schemes, or via chip ¢ move routines. In a call to chie 0, the carry
flae is shifted to the USR flir-flor for the data transfer. This has no effect
with the smaller chips, but it means that primary routines must seecify USR low
(carry clear) or USR hish (carry set) when callins chip 0 routines. For
example, to transfer the bottom half of a 27128 or 27256 to RAM, make source
$E000. length $2000, clear the carry flas and call MOVEBLK (Y=0).

i

Fage 34

NOTE®

The Examele 2 primary routine would reauire minor modification for 27128727256
implementation because no casnizance was taken of the carry flas before calline
chie O routines.

NOTE:

Primary routines are always entered with USR hish. and return from chie 0
routines is always with USR hiesh. Also notice in Examele 2 that calls to chie
0 are made with USR low.

The Chip O Bubroutines

There is a 9roup of subroutines available on chip 0 of the hizhest
priority auikiLoader for use by primary routines on other chips. These routines
can be called from any chis on any aquiklLoader by followine some simple
prosramming stees. The presence of these routines sreatly reduces the amount
of code necessary in primary routines.

The chie 0 subroutines are called via the bank switchine “STA $CO0B1.X"
at SFFEC with the desired subroutine identified by the Y-resister value. Table
2 is a 9eneral catasorization of the chip 0 subroutines. Some specific
subroutine usase notes follow here.

The MOVEBLK, MOVEINT, MOVEDOS. and DOJSR routines are called via a
"JSR* since a return is exprected. The other routines are called via a "JMP".
The accumulator control word must be set up and the X-resister must contain the
slot number x $10 of the hishest priority auikLoader as shown in prosrammine
Example 2. Source. leneth, and destination values must be set up for transfer
routines, and transfer confisuration needs to be set ue for 27128s and 27256s.
The transfer confisuration is set up as followss

chie action result
27128, 27256 CLC USR low durine transfer
27128, 27254 SEC USR high durins transfer
272356 DEC $26. 27 even bank transfer source
27256 $26, $27, as is odd bank transfer source

MOVEDOS moves DOS to RAM then initializes it. The initialization is
intercested at $9E41 in the midst of DOS first entry processins. You can then
send a kevboard command to DOS by storins it in the GETLN buffer ($200-$2FF).

Example: Catalos the disk.

1. Store ASCII for "CATALOG" at $200-$206.
2. Store $8D (CR) at $AAS6.
3. Store 7 (lenath of "CATALOG") at $AASA.
4, LDX $2E SET STACK POINTER
INX
INX
TXS
S. Exit to $9FB3 via GOMRERD chier O routine.

Page 35

Primary routines can directly execute subroutines residine in
$0000-$BFFF motherboard RAM. DOJSR allows vou to execute subroutines in the
$C100-$FFFF motherboard and peripheral slot address ranse. DOJSR performs the
monitor routine. RESTORE ($FF3F), before subroutine execution and the routine,
GAVE ($FFA4A), after execution. This is a means of passine 4502 resister values
to and from the motherboard subroutine. These subroutines use locations
$45-¢49 for storase of the 6502 resisters (see lines 45-49 of proorammine
Example 2). You need to set up $45-$49 as appropriate if vou want to specify
6502 resister inputs to a motherboard subroutine.

LOADFP, RUNFP, LOADINT, and RUNINT all move DOS to RAM and initialize
it as part of BASIC initialization. Runnins and loadine of Applesoft and
Inteser prosrams without DOS is not supported by GLOS.

Pase 36

Table 2 - The Chiep O Subroutines

Y-REG NAME

]

10

i2

14

i6

i8

(1)

(2)
{3)
(4)
(5
(&)

(7)
@

(9

-

FUNCTIDN SET UP MEMORY USAGE (4)
MOVEBLK Move data block from auiklLoader (1, 2, 7) $i11-$151, (5)
to RAM.

MOVEINT Move Inteser from auiklLoader to none $111-$151. (5)
hish RAM. Move monitor from

motherboard to hish RAM.

MOVEDOS Move DOS from auikLoader to RAM none (&)
and initialize.

DOJSR Execute motherboard subroutine. 7, 9) $111-$128, $45-%49
GOMRBRD Go to motherboard address {7) (8)
MBRDRST Do motherboard reset N $111-8116

$111-6114, $200-$202-
FP page 0. (4. B)

LOADFP Move DOS to RAM and initialize. 1, 3)
Move Applesoft prosram from al to
RAM. Enter Applesoft.

$111-%$114, $200-$203,
FFP pase 0. (4. B)

RUNFP Do ‘LOADFP. Run the Applesoft {1, 3)
praosram.

LOADINT Do MOVEINT. Move DDS to RAM and i, 3
initialize. Move Inteser prosram
from aL to RAM. Enter Intesger.

$111-$151, $200-$202,
Int pase 0. (64, B)

$111-4151, $200-$203.

RUNINT Do LOADINT. Run the Inteser 1, 3)
: Int pace 0, (6, 8)

prosram.

carry flas to USR #f durine transfer. DEC $26. $27 for even 256K bank (see
"27256 Prosrammine Considerations® and "27128/27256 Proerammins
Considerations").

source, lensth. destination to $3A-$3F.

source, lensth to $3A-$3D $204-$207.

all subroutines modify SAVCTRL/$30.

$3A-$3F modified.

$2E, $3A-$3F, $3D0-$3FF, $9D00-$BAFF, $BCOO-$BFFF modified. Dos buffers
initfalized ($9600-39CFF).

hish RAM control to $112 if needed (see "Hish RAM Control").

restores INTCXROM and SLOTC3IROM soft switches (see "Apple //e INTCYROM and
SLOTC3ROM Soft Switches").

subroutine address to $129, $450. 6502 resister inputs to $45-$49.

1124

Page 37

Hish RAM Control

Primary routines are first entered from QLOS with hish RAM (the 14K RAM
card) enabled for writine and disabled for readine. Hish RAM will stay
confiaured this way unless the primary routine chanses the confisuration. The
primary routine can thus store data to hish RAM at any time, and MOVEBLK calls
to chip O can be used to transfer data to hish RAM.

Hish RAM should not be confioured for readine while the auikLoader is
enabled., In other words. don’t do a "LDA $COBO" or similar command from a
orimary routine. I1f vou do enable hish RAM for readins from a erimary routine
in the Apple 1L or I{ Plus, the auikLoader will compete with the 16K RAM card
for control of the data bus. If vou enable hish RAM from a erimary routine in
an Apple //e: hish RAM will still be disabled for readins as lons as the
quikloader is enabled. This is because hish RAM is disabled by the INHIBRIT’
line in the Apple //e.

The MOVEBLK, DOJSR, GOMRBRD, and MRBRDRST chip 0 subroutines reseond to
a special hish RAM control byte. Pefore executine any of these routines a "STA
$COXX" (stored at $111-$113) is executed, FPrimary routines control this
instruction by storine a value at $112. This byte is normally set to $B1, and
it will remain at $81 unless a primary routine chanses it. This results in
execution of "STA $COB1" (disable hish RAM read, leave write enable as is).
You can chanse this byte to confisure the hish RAM for the chip 0 subroutine.
For example, place $83 at $112 and call DOJSR to perform a hish RAM subroutine.
After MOVEBLK and DOJSR, hiwh RAM is disabled for readine via a "STA $COB1"
before return to the primary routine. The $112 control of hish RAM bank 2 is
as follows: .

$80 read on, write off.
+61 read off, write as is.
$82 read off. write off.
€83 read on, write as is.

Location $112 can be used to do the 14K RAM card reset via the MRBRDRST
routine in an Apple 10 or [Plus. It cannot be used to do the hish RAM reset
in the Apple //e. This is because the "JMF ($FFFC)" from a pase 1 memory
address disables hish RAM in the Arple //e.

The MOVEINT, RUNINT, and LOADINT routines assume that hish RAM is
confisured for writine as it is when OLOS first passes control to the erimary
routine. Frimary routines which disable hish RAM writine must reenable it
before calline these routines. When prosram flow 9oes to hish RAM after RUNINT
or LOADINT, hish RAM will be disabled for writine.

Fase 38

Apple //e INTCXRDM and SLOTC3ROM Soft Switches

The auiklLoader addressins range overlaes the [/0 SELECT’ ($C100-$C7FF)
and 1/0 STROBE> ($CBOO-$CFFF) addressine ranees. 1/0 SELECT’ must therefore be
deactivated while the 6502 is addressins the $C100-$C7FF ranse of the
quikioader. This will also eliminate I/0 STROBE® conflicts because slot 1-7
peripheral card response to 1/0 STROBE’ is initiated by I/D SELECT'.

1/0 SELECT” in Apple 1{s and 1[Pluses is automatically inhibited by
the USER 1° line of the Apple when the auiklLoader is enabled and its USR
¢lie-floe is hish. 1/0 SELECT® in the Apple //e must be inhibited by prosram
control of the SLOTC3ROM and INTCXROM soft switches. Primary prosrams are
alwars entered with these switches at INTERNAL so the quikLoader can respond to
:flOO-SC7FF addressing while inhibitine motherboard response via the INHIRIT’

ne.

GOMRBRD, LOADFP, RUNFP, LOADINT. and RUNINT all restore the SLOTCZROM
and INTCXROM soft switches before entry to motherboard. INTC3ROM is set to
SLOT responses and SLOTC3ROM is set to SLOT or INTERNAL derendins on the
eresence of absence of an auxiliary RAM card.

Runnine Prosrams Resident in the asuiklLoader

The orerational philosorhy of The auiklLoader and QLOS is to transfer
prosrams to RAM for execution. However, erosrams can be run while they reside
in the aquikLoader. There are some limitations on this capability, thoush.

Resident prosrams can exercise motherboard 1/0 features controlled by
the $C000-$CO7F address ranse without limitatjon. Slot 1/0 control via DEVICE
SELECT® ($COBO-$COFF) can also be performed as lons as it doesn’t enable a
device which will compete with the auikLoader for control of the data bus.
Peripheral card ROM prosrams in the 1/0 SELECT’ ranse ($C100-$C7FF) can be
called while aquikLoader is enabled with the USR flip-floer low. This means you
could activate a printer driver as lons as it doesn’t utilize the 1/0 STRORE"
sated expansion ROM. The auikloader has no provision for disablina reseonse to
the $CBOO-$CFFF ranse so resident prosrams can not activate 1/0 eperipherals
which respond to the 1/0 STROBE’.

A second problem with resident prosrams is that they have restricted
access to motherboard monitor routines. You can execute motherboard
subroutines in the $C100-$FFFF ranse via the DOJSR call to chip 0. but this
becomes unwieldy if vou need to make many calls. There are no limitations on
calline motherboard subroutines in the $0000-$BFFF ranwe.

Pase I9

QLDOS Memory Usase

QLOS uses a certain amount of RAM. even thoush it runs in ROM. Like
all prosrams, it reauires pointers, counters. temporary storaze, etc.
Additionally. certain GLOS routines must be run from RAM. These routines are
transferred from the aquikLoader to RAM for execution.

Fisure 12 shows the OLOS eauate table. This information may be of use
to primary routine prosrammers. Zero pase locations are used for most
temporary storase locations. This was done because there is a limited space
available for QLOS in the quikLoader, and use of zero paze locations makes a
6502 proeram more compact. An attemet was made to select the zero pase
locations so as to minimize likely interference with user programs.

The QLOS RAM routines run in pagse 1 and. in the case of the kataloo
routine, pase 2. This memory area was chosen because it doesn’t contain data
critical to most prosrams. The idea here is to perform GLOS functions with a
minimal chance of clobberine user data. For example vou can do a B-reset to
initialize DOS in the Appie and very few memory locations outside of the DOS
area will be modified.

+% Fiaure 12 QLOS eaquate table
FIGURE 12 1S IN THE BACK

Commercial Develorement of auikloader Prosrams

It is quite easy for software publishers to publish their prosrams on
quiklLoader EPROM in addition to diskettes. SCRG encourases the publishins of
such products and is anxious to consult with any persons or companies
interested in doine so. SCRG is also willine to become a distributer of
proerams on EPROM or ROM for those companies hesitant to become involved with
EFROM prosrammins and adaptation to OLOS formats. It is SCRG’s intention to
keep all auikLoader puchasers advised of those prosrams that are available in
EFROM.

The auiklLoader is especially well suited to utilities, business, word
processine, spreadsheet, and data base manasement applications and prosrams
that senerally put the Apple to work. Feorle who work their Apple are very
appreciative of the concert of instant and convenient access to applications.

Some programs are fairly massive and possibly inapproeriate for
auikLoader impiementation. Prosrams which take um 100K bytes would have to be
very valuable to a user to justify the cost in EPROM and quikioader space. Of
course. a valuable prosram couried with auikloader convenience can be a very
markatable product in spite of substantial production cost.

Adartine a commerical erosram to auikLoader involves writins orimary
routines to handie the application and conversion of disk access to auiklLoader

Pase 40

access when arpropriate. It mav be desireble to access the aquiklLoader
occasionally to defeat unauthorized coeyine via NMI based RAM copying cards.
This can be done with auiklLoader without inconveniencine the user since access
to auiklLoader is so fast.

Published prosrams should normally have a power up routine as part of
the n-reset routine. This will allow the user to sut vyour chie in socket & and
have the Apple power up in your aeplication. Your documentation should inform
the purchaser whether or not the chiep is socket 6 compatible or not. This can
be done by markine the chie "Cé OK". Also, if your chie contains the GETSLOT
overhead, mark it "CO OK".

SCRG has a develorer’s information packase available to companies and
persons interested in publishins prosrams on EFROM or ROM. This can be
obtained by calline or writine

Southern California Research Group
attnt auiklLoader Developers’ Packase
PO BOX 2231

BGoleta, CA 93118

phonet (- -)

Pase 41
Hardware Descrieption

The quikLoader is simply a firmware card that resconds to read cycle
addresses between $C100-$FFFF when it is on, It isolates motherboard ROM and
Apple //e hish RAM from the data bus by pulline the INHIBIT® line low. It
isolates peripheral card ROM from the data bus by pullins USER § low in the
Apple [and 1L Plus, and by manipulation of the SLOTC3ROM and INTCXROM soft
switches of the Apple //e.

There are eisht ROM sockets on the auikLoader, each of which is carable
of resronse to the $C100-$FFFF ranse. Only one socket of the aquikLoader is
enabled at any one time, and chip O is the erimary socket, enabled by Aeple
resets.

Control of the aquikLoader is centered around the six bit confisuration
reesister (see Fisures 13 and 14). This resister determines whether the
quiklLoader is on or off, which chip is enabled, whether the odd or even 256K
bank is enabled. and address response as determined by the USR flip-floe. The
resister is set to 00000C by an Apple reset. and it can be set under prosram
control by storine values to the DEVICE SELECT® ranse of the slot in which a
qui kLoader resides.

The six bhit resister is divided up as follows?

B,0,U,DEF
where B = 256K even bank when low
0 = auikioader on when low
U = USR flie-flom
‘ DEF = the selected chip

From this you can see that an Apple reset forces the auikloader to even 256K
bank, on, USR low. chiep O.

When settine the auikloader under srosram control. bits D4-DO of the
data bus 90 to bits 4-0 of the control resister. These bits are set by placins
the control value in the accumulator and performine a "STA $COBi,X". AO of the
address bus is the input to control resister bit 5. so odd addresses will
select the odd 256K bank. The storins instruction is performed with slot
number x $10¢ in the Y¥-resister to select the odd bank and (slot number x $10) -
1 in the X-resister to select the even bank.

The USR flip-flor performs two functions. First, it bank switches the
$E0Q0-$FFFF addressins ranse for 27128 and 27256 EPROMs (see "27128/27256
Prosrammine Considerations”). Gecond, it enables the chip 0 omeratins system
to locate the auikioader slot by polline the 1/0 SELECT® ranse of the Aprle
slots. Glot location is possible because when USR is low, the aquikLoader will
respond to addressine in the $C100-$C7FF ranse only when 1/0 SELECT® for its
slot is low. Since USR is low after a reset. this enables a chir 0 routine to
locate the auikLoader slot (see the GETSLOT overhead section of srosrammins
Examele 2)} The self find feature is what makes the auikioader slot

Fage 42

independent.

If the DMA IN line is low and the DMA IN jumper is made, the aquikLoader
will not reseond to its address ranse. even if it is otherwise enabled. It
will also echo the low DMA IN input to its DMA OUT outeput. Similarly. if a
quikliLoader is enabled and respondine to its address ranse, it will brins DMA
OUT low. thus disabline lower epriority auiklLoaders. When an Apple reset
occurs:, all auikLoaders are enabled, but only the hishest eriority one will be
respondine. This is bhecause the DMA IN line of all but the highest priority
auikloader will be low. When the hishest priority auikioader first turns
itself off after a reset, the second priority auikiocader will pick up the
prosram flow. find itself, and turn itself off. This continues throush the
chain until all auikLoaders are off. At the completion of turn off. location
$2D contains a bit mar of slots which contain quikloaders. This is used by the
kataloe routine and the n-reset fall throush routine of OLOS. It is also
available for possible use by erimary routines.

#% Fisures i3 and 14 auiklLoader block diasram and schematic

FIGURE 13 IN ON THE INSIDE BACK COVER
FIGURE 14 IN ON THE BACK COVER

Appendix A — QRALDS Command Search Flowchart

(1)

Faee 47 ' StackpapT
=EEP.
Appendix B — Expungine DOS from Disks . T $L

Owners of aquiklLoader do not normally need to boot DOS 3.3 from a disk. T
Therefore. with auikloader installed in your Apple. there is no reason to have
DOS resident on all of vour disks. This means vou can remove the bootable DDS
imase from most of vour disks and ain an additional 32 sectors per disk for
data storase. You only need to keep DOS on a few disks for safekeerine in case
the need arises to boot DOS from a disk.

The accompanying proeram is a utility which will expunse the DOS imase
from disks. It does not actually overwrite DDS, but only frees tracks 1| and 2 -
in the VTOC (Volume Table Of Contents at track $ii, sector $00). It does ’ .
overwrite track $00, sector $00 with a short prosram to erint a reminder that - 4o
DOS has been expunsed if vou attempt to boot the disk. Since tracks 1 and 2 MoV TR
are free in the VTOC, DOS will eventually overwrite the tracks if vou store T T
enoush data to the disk.

‘ 6o 70
[L _Inoﬂ(l’fll’oﬂ&p
0 FSET

bo Go 1O
You should be cautious of a courle of pitfalls that you mieht encounter RESET cHip €
when expuneine DOS from your disks. First, many commercial prosrams contain a STUFF Powg R VP

modified version of DOS and won’t run with the standard DOS 3.3. Exeuneins the
modified DOS from a disk like this could cause the disk to become irretrievably
clobbered. It is therefore recommended that vou only expunge DOS from disks
you have initialized yourself or from backuers of commercial prosrams.

Certainly you should never expunse DOS from disks which must be booted to brine
up the resident application.

The second pitfall in expunsins DOS is when you attempt to expunse DOS
from a disk that doesn’t contain DOS. When vou free tracks i and 2 on a-disk
like this: you may well be enablina DOS to overwrite important data. In other
words. don’t run an expunse proesram more than once on a disk, and don’t attemet
to ewpunee DOS from a disk that never had DOS on it (e.s. disks formatted by
soreadsheet proerams or word processors).

To oprerate the listed EXFUNGE prosram, just BRUN the object mproeram and
do what the screen prompts say. This prosram will warn you if any sector on
tracks | or 2 is free or if track $00, sector $00 contains a "not bootable”
messase. 1f this is the case, the DOS imase is erobably not tresent and vou
should probably not allow EXPUNGE to free tracks 1 and 2.

++ source/object listine of EXFUNGE

APPENDIX A - Command Search Flowchart

SOURCE FILE®

0000

0000
0000
000
0000
0000

0000
[R{alnY %}
0007
OOZR:
0025
0O3F4:
coss:
FC24:
FCSB8:
FDoOC:
FDED:

0002
0000
OO042
0008
OO0C:

LO00:

6000 A2

L0005
L6072 DO
60092 4C
600C: 29
&LO0EICY
60102 DO

6012
60122
60128

6012:20
6015:85
6017:84
6019 AC
601B: BT
6OIE 91
6020:C8

oD
Al
E4:)
03z
Do
DF
D8
EE

EZ
07
06
00
6C
06

EXPUNGE
1 e
2 %
%+ EXFUNGE DOS UTILITY
4 %
S # WRITTEN FOR QUIKLOADER BY JIM SATHER
6
7 + VERSION 1. 1/4/84
B
?
10 +
11 I10BL EQU $6
12 I0EH EQU 7
13 SLOTNUM EQU $2PB POS SLOT NUMBER X $10
14 CV EQU $25
15 FWREYTE EQU $3F4
16 DRVOFF EQU sCoBB8
17 VTABRZ EQU $FC24
18 HOME EQU $FCS58
19 RDKEY EQU $FDOC
20 Cout EQU $FDED
21 CouTi EQU $FDFO
22 %
27 %
24 WRITE EQU 2 10R WRITE COMMAND
25 #*
26 TRACK EQU $4 I0B INDEX
27 BUFL EQU B I0B INDEX
28 COMMAND EQU $C 10B INDEX
29 *
IO
NEXT ORJECT FILE NAME IS EXFUNGE.ODBJO

k3 ORG $6000
I2
33 BEGIN LDX #INSRT.M-ERR.M PRINT INSERT DISK MESSAGE!

60 34 JSR FRINTM WAIT FOR KEYPRESS.
Z5 CMF #$9B ESCAFPE?
36 BNE #+5

0z 37 JMF $2DO ESCAFE TD DDS WARM START.
I8 AND #$DF MAKE LOWER CASE UFPER.
39 CMF #°X°
40 BNE PBEGIN EXFUNGE IF °*X" FRESSED.
41
42 *
4% # FIX I0B
44
45

0Oz 46 JSR $ZEZ GET 10EB ADDRESS.
a7 §TA 10BH
48 8Ty 10BL
49 LDY #0 TRANSFER I0R.

61 50 I0BLF LDA I0BSRC.Y
o1 §TA (I0BL) Y
o2 INY

EXPUNGE - 1

6021:C0O
60232 DO
60252 A0
6027:CO
6029290

602B:
60ZB:
60Z2B:

602Bt 38
602C: 08
w020t 20
6030t AD
6033:C9
6035: D0
6037:28
6038118
60359108
603AL AT
603Ct A0
603E2 91
6040220
6043142
6045t BD
6048:F0
604A: 28
EROS.

604P118
504C:08
604D1A%
604F1EO
605190
6053t 9D
60563E8
6057:8A
6058 29
605At DO
605CtEO0
605E: 90

604601
60601
60601t
60601
6060t

60602 28
60611 B0
6063202
(065120
6068t 29
606A1CY
606C: DO
b06E: A9

06
02
08
oD
FO

BE
F1
AL
03

11
04
06
BE
X8
FO
(o]

FF
3
03
FO

02
FA
42
ES

OB
SE
Al
DF
D9
1D
02

60
61

60

61

61

60

53
G4
55
56
57
o8
59
60
61
62
63
64
65
b6

68
69
70
71
72
73
74
75
76
77
78
79

80
B1
82
83
es
85
86
87
68
89
90
71
92
93
74
95
96
97
98
99
100
101
102
103
104
105
106

CFY
ENE
LDy
CFy
BCC

#6
w44
#8
#3D
10BLF

SKIF DEVICE TAELE.

n

+

+ NOW TRY TO

MAKE SURE

DOS NOT ALREADY EXFUNGED

VTOCLF

SKPLP

SEC
PHF
JSR
LDA
CMF
ENE
PLF
cLe
FHF
LDA
LDY
sTA
JER
LDX
LDA
PEQ
PLP

cLC
FHF
LDA
CPX
BCC
sTA
INX
XA
AND
BNE
CFX
BCC

GORWTS
BUFFER+1
#4AL
*45

#e11
#TRACK
(IDBL) - Y
GORWTS
#4328
BUFFER: X
w45

HeFF
#43C
*+5
BUFFER- X

#$02
SKFPLF
#4422
vTocLp

SET NOT EXFUNGED FLAG.
READ SECTOR 0/0.

SET EXFUNGED FLAG IF #A6.

READ VTOC (SECTOR 11/0).

FIX VTOC FOR TRACKS 1 & 2 FREE:

SET EXFUNGED FLAG IF BIT MAFP NOT ALL Z

DON’T FREE TRACK O.

FIX EVERY OTHER PAIR OF BYTES.

E 2R 2R 3R 2K J

READY TO WRITE VTOC NOW.
IF SECTOR 0/0 DR VTOC LOOKS FISHY.
LET OFPERATER DECIDE WHETHER OR NOT TO FROCEED.

CONT

FLF
BCS
LDX
JSR
AND
CHMP
BNE
LDA

CONT

BRANCH IF OK TO EXFUNGE

#EXFD.M-ERR. M

FRINTM
#$DF
#Y"
GDBEGIN
HWRITE

ALREADY EXFUNGED. CONTINUE?
CONVERT KEYFRESS LOWER TO UFFER CASE.

ESCAFE IF NOT "Y~.
WRITE VTOC.

EXPUNGE -2

60702 A0
6072191
6074220
6077809
60798 A0
607BR: 914
607D A0
bO7F: A9
6081:91
6083:C8
6084: A9
60B6: 91
6088220
60BR: AC

60BE:
LOBE:
LOBE:

&LOBE: 20
60F1220
60942 RO
60962 50
L0972 68
60982 68
6099:A2
LOPR: 20
6O9E: 4C

60OAL:
LOAL:
HOAL:

bLOALE20
LOA4: AT
bLOAL:BS
L0OAB: 20
LOAR: BD
COAEFO
LOBOE 20
LOBRZIEB
6OR4: DO
LORBL: 20
6OBF: 60

60BAS
LOBAS
60OBA:

6OBA:B7
60ORD:CY

oc
0b
8E
00
04
06
o8
79
06

61
06
BE
00

E3
D?
o1

(a]n)
Al
00

58
07
EBA
06
ED

FS
O

a7
AF

&0

60
&0

0z
0z

60
60

FC
FC
60

FD

FD

87
CF

107
108
109
110
111
112
11%
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
1Z0
131

122
132
124
135
176
137
1zZ8
129

140
141

142
143
144
145
146
147
148
149
150
151

152
153
154
155
156
157
158
159
160

LDY #COMMAND
STA (I0BL) .Y

JSR GORWTS

LDA %0 WRITE SECTOR 0/0.

LDY #TRACK

STA (IDBL).Y

LDY #HBUFL MAKE SRCO.0 THE RWTS BUFFER.

LDA #:>SRCC.0
STA (I0BL).Y
INY

LDA #<{SRCO.0
STA (IOBL).Y
JSR GORWTS

GOBEGIN JMP EEBIN G0 BACK FOR MORE.

o

* GO TO RWTS SUBRDUTINE
Ed

GORWTS JSR $3EZ FIND 10E.
JSR $3D9? DO RWTS.
BCS 10.ERR
RTS

10.ERR FLA POF.
FLA
LDX #0

JSR FRINTM FRINT "1/0 ERROR"
JMF BEGIN GD BACK FOR MORE.

*

FRINT MESSAGE AND WAIT SUERDUTINE
EQ

FRINTM JSR HOME
LDA #7
§TA CV
JSR VTABZ
FRTLF LDA ERR.M.X
BERQ ENDPRT - $00 ENDS MESSAGE
JSR COUT
INX
ENE FRTLF
ENDFRT JSR RDKEY
RTS

WAIT FOR KEYFRESS.

bk

*

MESSAGES OUTPUT BY FRINTM SUEBROUTINE
e

P

ERR.M DFE $87.487.487 THE BELL TOLLS.
ASC °1/0 ERROR"

EXPUNGE - 3

HOC0: A0
60032 D2
60C62 00
60C7:C?
60CALCS
&0CD2 A0
60D0e D3
60D3:C?
60D6 DT
60D?: D4
60DC:AC
&ODF2 D2
&0E2:CS
4OES: AE
&0E63 8D
&0EB: DO
&OERSD3
4OEE3A2
bOF18A0
&OF A2 A0
&OF7: DO
&OFALCT
&OFD:C4
61008 AE
63101:8D
6103: D0
6£1068D3
6109:CS
&10C: A0
610F s A0
6112:C3
6115:CS
6117200
6118:C4
&631BIC7
611E:8D
6120:87
b123:Ca
61268 A0
6129102
612CtCa
612F:CS
6132:D5
6135:CS
6138:8D
613AtC4H
613Dt DG
6140:00
6143:C9
6146200
6149:p3
614C:pa
614F:Co
6152:Cc5

cS
CF

CE
D2
ca
Ce
CE
cc
AQ
AC
ce
AD

eDn
D2
D3
D8
D4
CS
D5
CS
CF

8D
D2
D3
D3
D4
CS
231
AE

[
CS
an
87
CF
Ci
CS
D%
D8
CE
Ca
8D
CF
CF
D3
cc
D7
ce
CF
D2

Dz
Dz

D3
D4
ce
A0
A
CF
B
ca
D6
Bi

C5
AO
A2
CF
DB
CE
A0
D3

[
A0
Cc3
CF
DX
Do

CE
D2

87
D3
cc
Ci
AO
Do
c7
AE

A0
DS
D4
cc
ce
AD
A0
CS

161

DFE

162 INSRT.M ASC

163
164

169
166

167
168

169
170
i71

172
173

EXFD.M

DFB
ASC

DFB
ASC

DFB
ASC

DFB
DFE
ASC

DFB
ASC

$00
" INSERT DISE IN SLOT 6. DRIVE

$8D- 8D

FRESS "X TO EXFUNGE DOS.

$8D. $8D

*FPRESS ESC TO ESCAFE.’

$00

* DANGER?®

$8D. $8D

$B7.487.$87 THE BELL TOLLS.

*Dos ALREADY EXFUNGED. "

$8D- $8D

DD YOU STILL WISH TO FREE
EXPUNGE - 4

1.7

6153:8D
6155:D4
6158:CT
615B: A0
&15E:CH
6161: R0
61642 A0
61672 A0
b16A:CE
616R: 00

616C:
616C:
616C:
616C:
616C:

616C: 01
616D2 60
616E201
&16F 100
6170200
6171200
61722
6174:F0
6176200
j 6177100
i 6178201

61791
61791
61792
£179:
61792
61791
| 6179:01
j 617A: A8
617CEED
617FtEE
6182:20
6185:A9
6187285
6189220
618C:A2
616E:BD
6191:F0
6193120
61963E8
6197:D0
6199:D4
619C:D3
619F:C9

8D
Dz
CR
Bi
CE
B2
AC
D%

61

Ci
DZ
Ao

EBF
A
AF

co
0z

FC

FC

0 08

0 FD

c?
ca

* CE

174
175

176
177
i78
179
180
181
182
183
184
185
186
187
188
189
190
191
192
192
194
195
196
197
198
199

200 *
201 -

202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218

DFB
ASC

DFR

$8D- 8D
TRACES i AND 27 Y/N

$00

§

#

#

+ IDR SOURCE DATA

READ SECTOR 0/0 INITIALLY

10BSRC DFE
DFB
DFE
DFB
DFE
DFB
DS
DW
DFE
DFE
DFE

$01 [{e}}

$60 (1) SLOT 6

$01 (2) DRIVE 1

$00 (Z) ANY VOLUME

$00 (4) TRACK ©

$00 (5) SECTOR ©

2 (6) DEVICE TABLE
BUFFER (8) BUFFER ADDRESS
$00 (A) NOT USED

$00 (B) 256 BYTE PARTIAL SECTOR
$01 (C) COMMAND = READ

E 3
SOURCE DATA FOR SECTOR 0/0 OF EXPUNGED DISK
B
4

(AS SUGGESTED BY "BAG OF TRICKS".

WORTH AND LECHNER: QUALITY SOFTWARE. 1982)

#
SRCO.0 DFR
LDX
LDA
INC
JSR
LDA
8TA
JSR
LDX
MSGLP LDA
HANG BEQ
JSR
INX
BNE
MESSAGE ASC

$01 .

SLOTNUM

DRVOFF - X

FWRBYTE FIX FOWER-UP BYTE FOR REPOOT.
HOME

#7

cv

VTARZ

#O

MESSAGE-SRCO. 0+$800- %
HANG

couTti

MSGLF
"THIS DISK CANNOT FE BOODTED.®

EXPUNGE - 5

61A2: A0
61A5:CE
61A8: D4
61AB2CS
61AE:CF
61R1:CS
61B418D
61E6:C4A
61BR7: A0
61BC: DO
b1BFeC7
61C2t A0
61C5t A0
61CB:CY?
&1CBtCF
61CE:CS
61D1:8D
61D3: DO
61D63D3
61D9:C3
61DC:CC
61DF:CS
61E2:D4
61E5:CF
&1EB:D2
&1EB:CF
GIiEESAE
b1EF: 00

&1FO?

sk SUCCESSFUL

c3
CE
A
A
CF
ca
8D
CF
CcS5
DS
CS5
Cz
D1
ce
c1
D2
8D
D2
D3
D4
AD
DX
AC
D2
Cc3
CF

Ci
CF
cz
cz
D4
AE

DX
o]]
CE
ca
D?
DS
cc
ca
AE

CS
A0
D2
D2
CS
Cé
A0
c2
D4

219
220

223
224
225
226

ASSEMBLY: NO ERRORS

DFE $8D. $8D
ASC "DOS EXFUNGED BY QUIKLOADER."
DFR ¢8D. $8D
ASC "FRESS CTRL-RESET FOR REROOT."
DFE $00

BUFFER EGU =+

EXPUNGE - 6

6000
6OLE
coge
60BE
60C7
601R
HOAL
6056
FC24

BEGIN
CONT
DRVOFF
GOREGIN
INSRT.M
10BLF
FRINTM
SKFLF
VTABRZ

02 WRITE
08 BUFL
03F4 FWRBYTE
6056 SHFLF
6097 10.ERR
6OBA ERR.M
6179 SRCO.0
61F0 BUFFER
FDOC RDEEY

61F0 BUFFER
FDED COUT

60B6 ENDFRT
60BE GORWTS
6097 10.ERR
616C I0EBSRC
60AB FRTLF

2B SLOTNUM

6045 VTOCLP

04 TRACK

0C COMMAND
6000 BEGIN
606E CONT
&0A1 FRINTM
60C7 INSRT.M
618E MSGLF
£088 DRVOFF
FDED COUT

o8
FDFO

60EA.

6191
07
6199
03F4
6179
02

BUFL
CouTi1
ERR. M
HANG
10EH
MESSAGE
FWRBYTE
SRCO, O
WRITE

06 10BL

25 CcvV
601B 10BLP
608 GOBEGIN
60AE FRTLF
6318 EXFD.M
6191 HANG
FC24 VTABZ
FDFO COUTH

EXPUNGE - 7

oC
25
6118
FCS8
06
618BE
FDOC
04

COMMAND
cv
EXFD.M
HOME
10BL
MSGLF
RDKEY
TRACK

07 10BH

2B SLOTNUM
6045 VTOCLP
608BE GORWTS
60B&6 ENDFRY
616C I0DBSRC
6199 MESSAGE
FCS8 HOME

VSER 1 JumPER

' COMVEET INSULATED MWIRE

To, MA(E. Vs€r i Jumrr g

; ; : ; ‘
i ' B : i

' .

i ! i

i : i

- - - = - 4

! : !

: i .

; : ;

. , i

a— St et e
2 . i : . .]
E 5 - [}] -
; ; o ‘ o o
s 1 i
ot : 3
a — 4 - —

L i o i !

..' N . - - . '. N) ‘

| S EEICEENS EENEES RN S
1 f . -4 . . i |
¢ B _1. . o ' . o
I——” | - 3 P o
! 1 . . i H i :
R -t i i : !
% i ! i :
i - i 1

I T ‘ : ;
i AR P S ;
T T S L S
b ; ' . i

P t
A)

' H

Figure 1 - USER1 Jumper prior

]
i
'
1
|
.
f
f
1
i
1

to RFI revision

T .
S STk :
1 . §

BEFOFE

l°1,ﬁ —_— - - -
; ;”) s o free.

B S _ - I S
oPﬁN/—\ ° ‘T N B

: ' ”f4’ln 3 oF 54;1 coPNEcTpC | - -
beoo .
i

___FIGURE 3 r Modiflying'the 16K

B _v..,._[._.iv;lh.,,,:_ P,
4

| . - s
: ! o :

. SR _ .
%1 - L S

Ll

B

1

o heand r.;_?—;—f—f-‘.--- .

——— e - -

SRR SR
oo

©Sr3 bown :
. . T T e
: B T e e
; .
, o _—

Figure 4 .- Super RAM card switch setup

r"ahae = z’CIOO“IFfFF

i

> zof l([an!e ™ respouse

°

'z‘T;léz

r

2132

o0

17128

[-L3

17254
(2 boks)

SOURCE FILE:
————— NEXT ORJECT FILE NAME IS EXAMFLE

FFOO:

FF0OO0:89
FFO1:00
FFO3:H7
FFO5: 00
FFO7:C2
FFOA: D4
FFOR:82
FFOC:R7
FFOE:ZE
FF10:00
FF12: D%
FF15:C%?
FFi18:D3
FF1B:CS
FF1E:B1
FF1F:F5
FF21:7E
FF23:00
FF25:C7
FF28:C4
FF29:86
FF2A:

FF2A:

FF2A:

FFEF:A9
FFF1:EA
FFF2:9D
FFFSe

FFFB: 00
FFFA:FB

EOQ
01
00
CF

El
00
iF
DO
D4
(g
C5
E1l
00

(]
D2

00

81

FF

03

Ci

cc
AO
D2
CE

[04

co

-
VBN U D AWN-

11

i2
12
14
15
16

17
ie
19
20
21
22
23
24
25
26

BOATK

SPLTK

GRIDK

4% SUCCESSFUL ASSEMBLY?:

EXAMPLE 1 OVERHEAD

i OVERHEAD.ORJO

ORG $FFQO START KATALOG RECORD AT $FFOO
DFB $89 CONTROL-1 (INTEGER)
Dw $E000 SOURCE
DW $1B7 LENGTH
Dw $0000 MEANINGLESS DESTINATION
ASC "BOAT’ NAME
DFB $82 CONTROL-B (BINARY)}
DW $E1R7 SO0URCE
DwW $003E LENGTH
DW $1FO00 DESTINATION
ASC °SFLIT SCREEN’
DFBR ¢81 CONTROL-A (AFPLESOFT)
DW $EIFS SOURCE
DwW $007E LENGTH
DW $0000 MEANINGLESS DESTINATION
ASC ’GRID” NAME
DFB €86 CONTROL-F ENDS KATALOG RECORD
DS $FFEF—* SKIP TO $FFEF
LDA #$00 REQUIRED CODE MUST BEBIN AT $FFEF
NOF
STA $C0B1,X
DS 3
DW BOATK KATALOG POINTER AT $FFFB
DW $2FB NMI FOINTER AT $FFFA
NO ERRORS
FIGURE 10

.guRCE FILE? FIDCOPY ROUTS

0000°¢

00008
00008
00008
00001
00008

0000t
0000¢
00002
0000?
00008
0000°
00008

00008
00008
00002
00008
0000t
0000t
00008
00008
0000¢
00028
00043
00068
00081
000A:
000Cs
O00E
00102
00128

00002
00008
00008
00261
00272
002C:
002D:
003As
003B1
003Cs
003Ds
003Es
O03Fs
0045:
00441
00471
00481
00492

R

0
L EXAMPLE 2 ... OVERHEAD FILE
*»

* FID,. COPY.0OBJO. COPYA

*

*

*F1ID EO00-F24D

*COFY.DBJO F24E-F378

+*COPYFP F379-FACY

QL HELP FACA-FE7F

-
"

CHIP 0 ROUTINE EQUATES

INDEKES OF ROUTINES FROM WHICH A RETURN IS EXFECTED.
INDEXES 8 AND UP ARE FOR ROUTINES
FROM WHICH THERE IS NO RETURN.

»
L
*
* Y-REGISTER INDEXES OF THE CHIP O ROUTINES FOLLOW.
*
*
»

L]

0-6

ARE

MOVEBLK EQU O MOVE DATA BLOCK TO RAM.
MOVEINT EQU 2 MOVE INTEBER AND MONITOR TO RAM.
MOVEDOS EQU 4 MOVE DOS TO RAM AND INITIALIZE.
DOJSR EGU 6 DO MOTHERBOARD SUBROUTINE.
GOMRBRD EQU 8 G0 TO MDTHERBOARD.,

MBRDRST EQU 10 D0 THE MOTHERBOARD RESET.
LOADFP EQU 12 LOAD APPLESDFT PROGRAM.

RUNFP EQU 14 RUN APPLESOFT FROGRAM.

LOADINT EQU 16 LOAD INTEGER PROGRAM.

RUNINT EQU 18 RUN AN INTEGER PROGRAM.

»*

- GENERAL EQUATES

*

PRISLOT EQU $26 STORABE FOR PRIMARY SLOT.
SECSLOT EQU $27 BTORAGE FOR SECONDARY SLOT.
IIEFLB EQU $2C MSB RESET IF IIEs SET IF II.
GLMAP EGU $2D BITHMAP OF QL SLOTS.

SRCL EQU $3A INDIRECT SOURCE.

SRCH EQU $3E

LENL EQU #3C INDIRECT LENGTH.

LENH EQU $3D

DSTL EQU $3E INDIRECT DESTINATION.

DSTH EQU $3F

ACC EQU $45 SAVE/RESTORE EQUATES

XREB EGU %46

YREG EQU $47

STATUS EQU %48

SPNT EQU $49

FIGURE 11-1

FFszteb
) FF33'4E
ooDB: 54 ONERR EQU $DB AFFLESOFT ONERR FLAG. FF35:§§
0112: 55 HRDSOFT EQU $112 HIGH RAM CONTROL BYTE. FF37
02041 S6 SAVFNT EQU $204 SAVE POINTER AREA. <9179
020A1 57 SAVCTRL EQU $20A FF a5
AASFt 58 DOSCMDX EQU $AASF DOS COMMAND INDEX. FF3
B77A: 59 VCLDDOS EQU $B73A DOS COLD START VECTOR ($B73B). FFID14A
cos1: 60 GLCTRL EQU $CO0B1 GL CONTROL REBISTER. FFET6A
61 * FFIF16A
00001 62 * FF 80160
0000: 63 GET SLOT EQUATES FEA1129
0000 64 *) FF43:8D
0000t 65 CHIFO EQU $00 00000000 CHIP O ON. FF46160
0018 66 GQLOFF EOQU $18 00011000 GLOFF3 CHIPO.
0020t 67 CHKNUM EQU $20 NUMBER OF FIND SLOT CHECKS. FF47180
0040t 68 GSCL EQU $40 GET SLOT C PARAMETER. FF4A110
00412 49 BSCH EQU $41 FFADI02
0042: 70 BSEL EQU $42 GET SLOT E PARAMETER.
00431 71 GSEH EQU $43 FFAE
C006: 72 SLTXROM EQU $C00& 11E BOFT SWITCH. FFS31A9
€0071 73 INTXROM EQU $CO07 11E SOFT SWITCH. FF5319D
CO0A: 74 INTIROM EQU $COOA 11E SOFT BWITCH. FFS8120
COOR: 75 SLT3ROM EQU $COOR 11E SOFT SWITCH. FFSB1 DO
CFFFt 76 CLRROM EQU $CFFF
77 N
0000 78 » ggg:
————— NEXT OBJECT FILE NAME IS FIDCOPY ROUTS.ORJO FFSD
FFOO? 79 ORB $FF00 FERD
FF0O: 80 FESD
81 FFSD: 8D
FFOO: 82 * FF6018D
FFOO? 83 * KATALOG ENTRIES START HERE. FF&31A9
FFOO: B84 FF6518%
FF00:B82 85 FIDK DFB $82 CONTROL-B (BINARY). FF&718%
FF01:100 EO 86 DW $E00O SOURCE. FF691A9
FFO314E 12 87 DW $124E LENGTH. FF6B1 8%
FFO5:03 08 es DW $0B03 DESTINATION. FFoDIAT
FFO7:C6 C9 C4 89 ASC ’FID’ FFOF 185
FFOAt 90 90 COPYK DFB $90 CONTROL-P (PRIMARY). FE71100
FFOR:98 FF 91 DW N.RESET BASE ADDRESS OF MDVE COPY ROUT. FE731B1
FFOD:00 00 92 DW $0000 MEANINGLESS LENGTH FF75: D1
FFOF100 00 93 DW $0000 MEANINGLESS DESTINATION FF77:D0
FF11:C3 CF DO 94 ASC *COPYA’ FF79:188
FF14tD9 Ci FF7A1D0
FF16181 95 HELFK DFB $81 CONTROL-A (FP). FF7CtAS
FF171CA FA 96 DW $FACA SOURCE. FF7E1AB
FF191B5 03 97 DW $O3PS LENGTH. FF7F10n
FF1B:00 00 98 DW $0000 MEANINGLESS DESTINATION. FFBO10A
FF1D:D1 D5 C9 99 ASC ’QUIK LOADER/QLOS HELP® FFB110A
FF20:CR A0 CC FEB2t0n
FF23:CF C1 C4
FF261CS D2 AF
FF29:D1 CC CF
FFZC:D3 AO CB
FF2FICS CC DO
FIGURE 11-2
Py -

F2
01
02

F3
07

EO
OA

40
o8B

18
a1
SD
Fé6

06
OB
00
40
42
C1
41
El
43
20
40
42
19

F7
41

02
20

04

co
FF

co
co

100
i01
102
102
104
105
106
107
108
109
110
111
112
113
114
115
ii6
117
i18

119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
147
150
151

DFB $B6 CONTROL-F TERMINATES KAT RECORD.
OBJFARM DW $F24E SOURCE
DwW $012B LENGTH
DW $02A0 DESTINATION
CPYFARM DW $F379 SOURCE
DW $0751 LENGTH
INVERT LSR A CHANGE O000ABRXXX TO XXX00000.
ROR A
ROR A
ROR A
AND #$EO
8TA BAVCTRL
RTS
MAP DFB $B80, %40, $20, %10, 48,84, $2
DS $FFS53—* SKIF TO $FF53.
OFFLP LDA #GLOFF

8TA GQLCTRL.X TURN OFF THE OL.
RTSLOC JSR GETSLOT THIS INSTRUCTION AT $FF58 (RTS).
BNE OFFLP

»

*FIND SLOT NUMBER BY COMPARING CNXX TO ENXX FOR EACH
*SLOT. START WITH SLOT 7. USR MUST BE RESET FOR
*SEARCH TO BE EFFECTIVE IN II OR IIE.

L]

BETSLOT STA SLTXROM ENABLE I1E 1/0 SELECTS.
STA SLT3IROM
LDA #0
STA BGSCL |
STA GSEL
TRYAGEN LDA ##C1 START WITH BLOT 1.
8TA GSCH SOURCE = $CNOO.
LDA #sE1L |
STA GSEH DESTINATION = $ENOO.
LDY #CHKNUM GET NUMBER OF CHECKS TO VERIFY.
LOOKLP LDA (GSCL)»Y
CMP (BSEL),Y
BNE NOTHERE PRANCH IF QL NOT IN THIS SLOT.
DEY
BNE LOOKLP
LDA GSCH THIS 18 THE SLOT.
TAY
ASL
ASL
ASL
ASL

GET SLOTNUM TIMES $10 TO X.

>P>>D

FIGURE 11-3

FF83:tAR
FFB41B%
FFB7:05
FFB9:85
FFB8B:8D
FFBE:
FFBE®
FFBEs
FFBEs
FFBEs AD
FF91160
FF92:EbL
FF941E6
FF96: DO
FF98t
FF98s
FF98:

FF982
FF98:
FF98:
FF981
FF98:
FF983
FF98:
FF98:
FF98:
FF98:
FF98: 08
FF99:20
FFoC:28
FF2D:BO
FF9FsAC
FFA1320
FFA4: A0
FFA6220
FFA9: A9
FFAB: 8D
FFAE: B85
FFBO:A?
FFB2: 48
FFR3: A9
FFB5: 48
FFB&:AO
FFBB8:4C

FFEBS
FFBB:
FFEB?:
FFBB?
FFBB?
FFBB?
FFEBB?
FFBB:AO

86
2D
2D
0A

FF

41
43
DB

3D

ic
02
E7
04
E7
-]
SF
pe
B7

IA

08
E7

03

FE

co

CF

FF

FF

FF

AR

FF

152
153
i54
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
iBe1
182
183
184
185
i86
187
188
189
190
191
192
193
194
1995
196
197
i98
199
200
201
202
203
204
203

"

TAX

LDA MAP-$CL,Y BGET BIT MAP.

ORA QLMAP

8TA QLMAP SET BIT IN QLMAF.

STA INT3IROM LEAVE INT3IROM AS NORMAL RESET DOES.

+*NORMAL RESET FORCES SLTXROM.

|
L]

LEAVE 3ROM AND XROM AS WITH NORMAL RESET.

LDA CLRROM EXPANSION ROM OFF.
RTS

NOTHERE INC BSCH

»

INC GSEH CHECK IN NEXT 6LOT.
BNE LOOKLP BRANCH ALWAYE TAKEN.

*EQU $CO SHOULDN’T OCCUR3 BOMB IF IT DOES.
e

W
THIS I8 N.RESET ROUTINE OF THIS CHIP.
»*
* IF CARRY FLABG I8 SET, MOVE COPY.OBJ
* AND COPYA TO RAM AND EXECUTE COPYA.
L]
IF CARRY FLAG IS CLEAR, MOVE INTEGER
» AND DOS THEN COLD START DOS.
e
*®
N.RESET PHP SAVE POWER UP STATUS.
JSR INVERT
PLP
BCS DOCOPY BRANCH IF NOT POWER UP.
LDY #MOVEINT CARRY CLEAR 80 DO POWER UP.
JSR BOCHIPO MOVE INTEBER.
LDY #MOVEDOS MOVE DOS.
JSR BGOCHIPO
LDA WsiB
8TA DOSCMDX SET DOS COMMAND INDEX FOR NO HELRLO.
8TA ONERR MSB RESET FIXES FP ONERR FLAG.
LDA #<VCLDDOS DOS COLD START 18 $B73B.
PHA
LDA #>VCLDDDS
PHA
i.DY #GOMRBRD
JMF GOCHIPO 60 COLD START DOS.
L3
» DOCOPY
»e
#* ROUTINE TO MOVE COPY.DBJO AND COPYA AND EXECUTE.
»
»* RUN COPY IF NOT POWER UP.
-
DOCOPY LDY #5

FIGURE 11-4

‘o 33 FF

ps BY
Foos97 SA 00
FC3:88
FCasil

8RO
FCi20 E7 FF

:A0 03
$33199 39 FF
Fpos 99 3R 00
FD3199 04 02
FD63 B8
FD7810 FA
FD9:A0 OE
FDB14C E7 FF

FDES

FE73Ab 26
FE73AD OA 02
FECIYD 81 CO
FEF14AC 98 FF
FF2t

FF5160

FFb8

FFB100 FF
FFAIFB O3
‘FFCS

'FFCH

FFCH

ok BUCCESSFUL

206
207
208
209
210
2114
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233

0BILP LDA OBJFARM.Y MOVE COFY.0OBJO BRC/LEN/DST
8TA SRCL.Y PARAMETERS TO PAGE O LOCATIONS.
DEY
BPL OBJLP
LDY #MOVEBLK
JSR GOCHIPO MOVE COFY.OBJO TO RAM.
LDY #3
COFPYALP LDA CPYPARM.,Y MOVE COPYA SRC/LEN
S§TA SRCL.Y PARAMETERS 7O FAGE O LOCATIONS.
STA BAVPNT.Y ALSD PLACE IN SAVE FOINTER AREA.
DEY
BPL COPYALP
LDY #RUNFF
JMP GOCHIPO B0 RUN COPYA
DS SFFE7—# SKIP TO S$FFE7.
BGOCHIPO LDX PRISLOT BET QLOS SLOT NUMBER.
LDA BAVCTRL
B8TA QLCTRL.X GO TO CHIP O.
JMP N.RESET DO N.RESET ROUTINE OF THIS CHIF.
D8 3
RTS
Ds 2
Dw FIDK FIRST KATALOBG LOCATION.
Dw $3FB NMI VECTOR
™

* DON°T WORRY ABOUT RESET AND IRR VECTORS.

L

ASSEMBLY: ND ERRORS

FIGURE 11-5

ACC
COFYALF
DOJSR
FIDK
GSCH
HELPK
INTXROM
L.OADFP
MBRDRST
N.RESET
OFFLF
QLMAF
RUNINT
SLT3IROM
SRCL
XREG

7T 00
TFFOA
AASF
FF5SD

40
20112
FF3D

00
FF92

is
020A
Co06
? A48
? 47

CHIFO
COPYK
DOSCMDX
BETSLOT
G8CL
HRDSOF T
INVERT
LOADINT
MOVERLK
NOTHERE
ONERR
QLOFF
SAVCTRL
SLTXROM
STATUS
YREG

FIGURE 11-6

CHKNUM
CFYPARM
DSTH
BOCHIPO
GSEH
11EFLG
LENH
LOOKLP
MOVEDOS
OBJLP
FRISLOT
RTSLOC
SAVPNT
SPNT
TRYABEN

CFFF
FFBR
? 3E

o8

42
CooA
? 3C
FFa7

02
FF33
coBi

? 27
? 3B
B73A

CLRROM
DOCOFY
DSTL
BGOMRBRD
BGSEL
INTIROM
LENL
MAP
MOVEINT
OBRJFARM
QLCTRL
RUNFP
SECSLOT
SRCH
VCLDDOE

00
06
OE
20
2D

-3

41

De
AASF
COO0A
FFOO
FF39

- ?FF58

FF92
FFCD

MOVEBLK
DOJSR
RUNFP
CHKNUM
OLMAFP
LENH
BSCH
XREG
ONERR
DOSCMDX
INT3ROM
FIDK
CPYPARM
RTSLOC
NOTHERE
COPYALP

o8

26
3A
? 3E
42

70112
B73A
COOB

7FFOA
FF3D
FFSD
FF98
FFE7

CHIPO
BOMREBRD
LOADINT
PRISLOT
SRCL
DSTL
BSEL
YREG
HRDSOFT
VCLDDOS
SLT3IROM
COFPYK
INVERT
BGETSLOT
N.RESET
BOCHIPO

02
oA
12
27
3B
3IF
43
48
0204
Co06
cos1
?FF16
FF47
?FF6%
FFBB

IS RSN RN IR

~J

FIGURE 11-7

MOVEINT
MBRDRST
RUNINT
SECSLOT
SRCH
DSTH
GSEH
B8TATUS
SAVPNT
SLTXROM
QLCTRL
HELPK
MAP
TRYAGEN
pocopy

04

18
2C
3C
40

3 =)

020A
?C007
CFFF
FF33
FF53
FF73
FFBD

MOVEDOS
LOADFF
QLOFF
11EFLG
LENL
GSCL
ACC
SFNT
SAVCTRL
INTXROM
CLRROM
OBJFARM
OFFLFP
LOOKLF
OBJLP

it

‘ 00008 54 +%6 = DON'T DISFLAY FARAMETERS.
‘ IO0URCE FILE: OLOS EQUATES 00001 55 @
QOO0 1 00402 56 GSCL EQU $40 GET SLOT C FARAMETER.
0000% 2 - o041t 57 GSCH EQU $41
oW auikl.oader CHIF O ROUTINES # 00408 58 MOD256 EQU $40 KATALOG WRAF COUNTER.
4 * * 0041¢ 59 R.LFLAG EQU $41 RUN/LOAD FLAG DURING KATALOBG.
; 5w BY JIM SATHER #* " ooaz: 60 GSEL EQU $42 GET SLOT E FARAMETER.
A 6 b 00432 61 GSEH EQU $43
' 7 % COFPYRIGHT SEFTEMBER 19. 1983 * 00428 62 KBSL EQU $42 KATALOG PASE ADDRESS.
; 8 * Ed . 0043¢ 63 EBSH EQU %43
? 00451 64 BFFRFLG EQU $45 DOS BUFFER AVAILABLE FLAG.
10 % 004CE 65 HIMINTL EQU $4C INTEBER HIMEM.
11 = ! 004Ds 66 HIMINTH EQU $4D
12 kb4 EQU 1 64K OR 128K ASSEMBLY. 00672 67 FFEOFL EQU $67 FF BEGINNING OF FROGRAM.
13 0068 68 FFROFH EQU $68
14 = 00698 69 VARL EQU $69 START OF FF SIMFLE VARIAELES.
! 15 HELLO EQU 30 RUN HELLO AFTER DOS INIT FLAG. 006AL 70 VARH EQU s6A
i t6 CHIFO EQU $00 00000000 CHIF O ON. oogot 71 RONWOFF EQU $80 HIGH RAM READ ON. WRITE OFF.
i 17 CHIFO.1 EQU $08 USED IN 12BK ASSEMBLY. 00818 72 ROFFWOK EQU 481 HIBH RAM READ OFF. WRITE Ok.
‘ 18 CHIF6 EQU $0E 00001110 CHIF & ON. 0083t 73 RONWOK EQU $B3I HIBH RAM READ ON. WRITE OK.
NOOF 2 19 CHIF7 EQU $OF 00001111 CHIF 7 ON. 00AF? 74 EOFPL EQU $AF FFF END OF FROGRAM.
00182 20 OLOFF EQU $18 00011000 QLOFF3 CHIP O. 00BO? 75 EOFH EQU $EO
001R: 21 NOHELLD EQU $1B ND RUN HELLO AFTER DOS INIT. 00CA? 76 INTBOFL EQU $CA INTEGER BEGINNING OF FROGRAM.
00203 22 CHENUM EQU $20 NUMEER OF I1.1IE & FIND SLOT CHECKS. 00CB? 77 INTEROFH EQU $CR
| . 2% WNDLFT EQU $20 00D8 78 ONERR EQU $DB FP ONERR FLAG.
| 24 WNDWDTH EQU $21 . 02001 79 GLNBFFR EQU $200 GET LINE EUFFER
| 25 CH EQU $24 02041 80 SAVFNT EQU $204 SAVE SRC/LEN/DST AREA.
26 CV EQU $25 0208: 81 SAVDSTL EQU $208
27 PRISLOT EQU $26 STORE PRIMARY SLOT NUMBER. 0209t 82 SAVDSTH EQU $209
28 SECSLOT EQU $27 STORE SECONDARY SLOT NUMBER. 03CF: B3 DOSWARM EQU $3CF USED FOR WARM START AFTER CATALOG.
29 IIEFLG EQU $2C MSB RESET IF 11E3 SET IF II. O3EA? B4 CNCTDOS EQU $3EA CONNECT DOS ROUTINE.
30 OLMAF . EQU $2D BITMAF OF SLOTS WITH GLS. 03Fat B85 PWRBYTE EQU $3F4 FOWER UF RESET BYTE.
31 SAVSTAK EQU $2E SAVE STACK LOCATION. 03FB1 86 CTRLY EQU $3FB CONTROL-Y VECTOR.
32 103FLAG EQU $2F SAVE SLOTIROM SWITCH STATUS. 0111: 87 BUFFER EQU $111 RAM ROUTINE AREA.
32 SAVCTRL EQU $30 SAVE QL CONTROL WORD. 01123 88 HRDSOFT EGU BUFFER+1 HIGH RAM CONTROL LOCATION.
24 SKRCL EQU $3A INDIRECT SOURCE. 01152 B9 KATBFFR EQU BUFFER+4 KAT ROUTINE AREA.
35 SRCH EOU $3B ARSF & 90 DOSCMDX EQU $AASF DOS COMMAND BEING EXECUTED.
I6 TOFKAT EQU $3A NUMBER OF TOF KATALDG ENTRY. €000 91 KEYBRD EQU $CO00
37 KATCNT EQU $3B COUNTS KATALOB ENTRIES. Co0st 92 SLTXROM EQU $CO06 11E SOFT SWITCH.
38 LENL EQU $3C LENGTH OF MOVES. Co07: 93 INTXROM EGU $C007 11E SOFT SWITCH.
39 LENH EQU $3D COOA! 94 INTZROM EQU $CO0A 11E SOFT SWITCH.
40 SAVEMAP EQU $3C SAVE SHIFTED QL MAP DURING KATALODG. COORe 95 SLTIROM EQU $COOE 11E SOFT SWITCH.
41 LINNUM EQU $3D ATALDB LINE NUMBER EEING FRINTED. Co10s 96 AKD EQU $CO10 ANY KEY DOWN?
42 % Co101? 97 KEDSTRE EQU $CO10
43 +0 = NO FRINT YET Coi5: 98 READCX EQU $CO1S READ CXROM SOFT SWITCH.
44 +1-24 = FRINTING €017+ 99 READCI EQU $CO17 READ CIROM SOFT SWITCH.
45 *30 = SCROLL FORWARD ONE LINE. COZ0s 100 SFEAKER EQU $CO30
46 +$CO = GET ROUTINE FOR EXECUTION. Co5e:1 101 ANOOFF EQU $C0S8
47 COSA: 102 AN1OFF EQU $COS5A
48 DSTL EQU $3E INDIRECT DESTINATION. ' cosp: 103 AN2ON EQU $COSD
49 DSTH EQU $3F . CosFs 104 AN3ON EQU $COSF
S0 DELTA EQU $3E CHANGE IN TOFKAT DURING SCROLL. *COo6b1t 105 OFENAFL EQU $C061
S1 NAMELEN EQU $3F DISFLAY FPARAMETERS FLAG. C062: 106 SLDAFL EQU $CO062
0000 52 # CoBi: 107 QLCTRL EQU $CO0B1 QUICK LOADER CONFIGURATION REGISTER.
00008 5% %16 = DISFLAY FARAMETERS.

FIGURE 12, PAGE 2

FIGURE 12, PAGE 1

cogis 108 WRTONLY EDU $COB1 MIGH RAM CONTROL.
CFFFs 109 CLRROM EQU $CFFF
FEZF 110 INIT EQU $FE2F
FEEA: 111 GDTOCK EQU $FER4
FCazs 112 CLREOF EQU $FC42 CLEAR END OF FAGE.
FCsB: 113 HOME EQU $FCSB
FDOC: $14 RDKEY EQU $FDOC MONITOR READ KEY ROUTINE.
FDBE: 115 CROUT1 EQU $FDBE CLREOL AND CR.
FDDA: 116 FRBYTE EQU $FDDA .
FDED: 117 COUT EGU $FDED .
FEB4: 118 SETNORM EQU $FEB4 ‘ ,
FEB: 119 sznz:go EQU QFEB*?' REPRR LU auip| [enref fewro| [cup| |RiP| (chiP| | kP NP Imog ::l DI
FE93: 120 SETVID EQU $FE93 L AIRAIERIFE IRl R .
FFIFs: 121 RESTORE EQU $FF3F RESTORE 4502 REGISTERS. b . ,
FFaAs 122 SAVE EQU $FF4A SAVE 6502 REGISTERS. S
! |

w4+ BUCCESSFUL ASSEMELY: NO ERRORS)

Ao

A CONFIGURATI0A)

RECIITE R

ol o MTARMIBE

L (D—ocERt” -
(D pmA T

- iR’

D AdbrESS 8US - , ——————Rom A3

S DR U S — R

FIGURE 12, PAGE 3

; o Figure 13 - quikLoader Block Diagram

L]

T T Ay

[V

FiLT

2welz

[

77

)

T

- . C8tUL?
I3

-

Zi

Cp L AJﬂIA”u] ”.““M
7T L2 s O DR
s @

T

.o

s ,gll-: [44
[bobat
k14

(W0 S M
S
i

L3

- iy @ o0

P 177 ' i
2593y A3y

NIV I B Nod

Figure 14 - quikLoader schematic

